Documentation Verification Report

Notation

πŸ“ Source: Mathlib/SetTheory/Ordinal/Notation.lean

Statistics

MetricCount
DefinitionsNONote, below, cmp, instAdd, instInhabited, instLinearOrder, instMul, instPreorder, instRepr, instSub, instToString, instWellFoundedRelation, instZero, mk, oadd, ofNat, opow, recOn, repr, ONote, FundamentalSequenceProp, NF, NFBelow, TopBelow, add, addAux, cmp, decidableNF, decidableTopBelow, fastGrowing, fastGrowingΞ΅β‚€, fundamentalSequence, instAdd, instInhabited, instMul, instMulZeroClass, instOne, instPow, instPreorder, instRepr, instSub, instToString, instWellFoundedRelation, instZero, mul, mulNat, nat, ofNat, omega, opow, opowAux, opowAux2, repr, repr', scale, split, split', sub, toString, instDecidableEqNONote, instDecidableEqONote, decEq
62
TheoremsNF, cmp_compares, instWellFoundedLT, lt_wf, repr_add, repr_mul, repr_opow, repr_sub, below_of_lt, below_of_lt', fst, oadd, oadd_zero, of_dvd_omega0, of_dvd_omega0_opow, out, snd, snd', zero, zero_of_zero, fst, lt, mono, oadd, repr_lt, snd, NFBelow_zero, add_nf, add_nfBelow, cmp_compares, eq_of_cmp_eq, fastGrowing_def, fastGrowing_limit, fastGrowing_one, fastGrowing_succ, fastGrowing_two, fastGrowing_zero, fastGrowing_zero', fastGrowingΞ΅β‚€_one, fastGrowingΞ΅β‚€_two, fastGrowingΞ΅β‚€_zero, fundamentalSequenceProp_inl_none, fundamentalSequenceProp_inl_some, fundamentalSequenceProp_inr, fundamentalSequence_has_prop, le_def, lt_def, mulNat_eq_mul, mul_nf, nfBelow_iff_topBelow, nfBelow_ofNat, nf_mulNat, nf_ofNat, nf_one, nf_opow, nf_opowAux, nf_repr_split, nf_repr_split', nf_scale, oadd_add, oadd_lt_oadd_1, oadd_lt_oadd_2, oadd_lt_oadd_3, oadd_mul, oadd_mul_nfBelow, oadd_pos, ofNat_one, ofNat_succ, ofNat_zero, omega0_le_oadd, opow_def, repr_add, repr_inj, repr_le_repr, repr_lt_repr, repr_mul, repr_ofNat, repr_one, repr_opow, repr_opow_aux₁, repr_opow_auxβ‚‚, repr_scale, repr_sub, repr_zero, scale_eq_mul, scale_opowAux, split_add_lt, split_dvd, split_eq_scale_split', sub_nf, sub_nfBelow, zero_add, zero_def, zero_lt_one
94
Total156

NONote

Definitions

NameCategoryTheorems
below πŸ“–MathDefβ€”
cmp πŸ“–CompOp
1 mathmath: cmp_compares
instAdd πŸ“–CompOp
1 mathmath: repr_add
instInhabited πŸ“–CompOpβ€”
instLinearOrder πŸ“–CompOpβ€”
instMul πŸ“–CompOp
1 mathmath: repr_mul
instPreorder πŸ“–CompOp
3 mathmath: cmp_compares, lt_wf, instWellFoundedLT
instRepr πŸ“–CompOpβ€”
instSub πŸ“–CompOp
1 mathmath: repr_sub
instToString πŸ“–CompOpβ€”
instWellFoundedRelation πŸ“–CompOpβ€”
instZero πŸ“–CompOpβ€”
mk πŸ“–CompOpβ€”
oadd πŸ“–CompOpβ€”
ofNat πŸ“–CompOpβ€”
opow πŸ“–CompOp
1 mathmath: repr_opow
recOn πŸ“–CompOpβ€”
repr πŸ“–CompOp
4 mathmath: repr_add, repr_opow, repr_sub, repr_mul

Theorems

NameKindAssumesProvesValidatesDepends On
NF πŸ“–mathematicalβ€”ONote.NF
ONote
β€”β€”
cmp_compares πŸ“–mathematicalβ€”Ordering.Compares
NONote
Preorder.toLT
instPreorder
cmp
β€”ONote.cmp_compares
instWellFoundedLT πŸ“–mathematicalβ€”WellFoundedLT
NONote
Preorder.toLT
instPreorder
β€”lt_wf
lt_wf πŸ“–mathematicalβ€”NONote
Preorder.toLT
instPreorder
β€”Ordinal.lt_wf
repr_add πŸ“–mathematicalβ€”repr
NONote
instAdd
Ordinal
Ordinal.add
β€”ONote.repr_add
NF
repr_mul πŸ“–mathematicalβ€”repr
NONote
instMul
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Ordinal.monoidWithZero
β€”ONote.repr_mul
NF
repr_opow πŸ“–mathematicalβ€”repr
opow
Ordinal
Ordinal.instPow
β€”ONote.repr_opow
NF
repr_sub πŸ“–mathematicalβ€”repr
NONote
instSub
Ordinal
Ordinal.sub
β€”ONote.repr_sub
NF

ONote

Definitions

NameCategoryTheorems
FundamentalSequenceProp πŸ“–MathDef
5 mathmath: fundamentalSequenceProp_inl_none, fundamentalSequenceProp_inl_some, fundamentalSequenceProp_inr, fastGrowing_def, fundamentalSequence_has_prop
NF πŸ“–CompData
21 mathmath: nfBelow_iff_topBelow, nf_repr_split', NF.snd, nf_opow, NF.oadd, NF.oadd_zero, sub_nf, fundamentalSequenceProp_inl_some, nf_ofNat, NF.fst, nf_one, mul_nf, fundamentalSequenceProp_inr, nf_scale, nf_opowAux, nf_repr_split, NFBelow.fst, NONote.NF, nf_mulNat, add_nf, NF.zero
NFBelow πŸ“–CompData
7 mathmath: nfBelow_iff_topBelow, NFBelow_zero, NF.out, NF.below_of_lt', NF.below_of_lt, NF.snd', nfBelow_ofNat
TopBelow πŸ“–MathDef
1 mathmath: nfBelow_iff_topBelow
add πŸ“–CompOpβ€”
addAux πŸ“–CompOp
1 mathmath: oadd_add
cmp πŸ“–CompOp
1 mathmath: cmp_compares
decidableNF πŸ“–CompOpβ€”
decidableTopBelow πŸ“–CompOpβ€”
fastGrowing πŸ“–CompOp
7 mathmath: fastGrowing_limit, fastGrowing_succ, fastGrowing_one, fastGrowing_zero, fastGrowing_zero', fastGrowing_def, fastGrowing_two
fastGrowingΞ΅β‚€ πŸ“–CompOp
3 mathmath: fastGrowingΞ΅β‚€_zero, fastGrowingΞ΅β‚€_two, fastGrowingΞ΅β‚€_one
fundamentalSequence πŸ“–CompOp
1 mathmath: fundamentalSequence_has_prop
instAdd πŸ“–CompOp
6 mathmath: zero_add, add_nfBelow, oadd_add, repr_add, oadd_mul, add_nf
instInhabited πŸ“–CompOpβ€”
instMul πŸ“–CompOp
7 mathmath: repr_mul, oadd_mul_nfBelow, mulNat_eq_mul, mul_nf, repr_opow_auxβ‚‚, scale_eq_mul, oadd_mul
instMulZeroClass πŸ“–CompOpβ€”
instOne πŸ“–CompOp
6 mathmath: repr_one, ofNat_one, zero_lt_one, split_eq_scale_split', nf_one, fastGrowing_one
instPow πŸ“–CompOp
3 mathmath: nf_opow, repr_opow, opow_def
instPreorder πŸ“–CompOp
7 mathmath: cmp_compares, lt_def, zero_lt_one, le_def, fundamentalSequenceProp_inr, oadd_lt_oadd_2, oadd_pos
instRepr πŸ“–CompOpβ€”
instSub πŸ“–CompOp
3 mathmath: sub_nf, sub_nfBelow, repr_sub
instToString πŸ“–CompOpβ€”
instWellFoundedRelation πŸ“–CompOpβ€”
instZero πŸ“–CompOp
16 mathmath: ofNat_succ, NFBelow_zero, zero_add, repr_zero, fundamentalSequenceProp_inl_none, zero_lt_one, NF.oadd_zero, ofNat_zero, repr_opow_auxβ‚‚, scale_eq_mul, fastGrowing_zero, scale_opowAux, oadd_pos, zero_def, oadd_mul, NF.zero
mul πŸ“–CompOpβ€”
mulNat πŸ“–CompOp
2 mathmath: mulNat_eq_mul, nf_mulNat
nat πŸ“–CompOp
1 mathmath: fastGrowing_two
ofNat πŸ“–CompOp
8 mathmath: ofNat_succ, ofNat_one, ofNat_zero, mulNat_eq_mul, nf_ofNat, repr_ofNat, repr_opow_auxβ‚‚, nfBelow_ofNat
omega πŸ“–CompOpβ€”
opow πŸ“–CompOpβ€”
opowAux πŸ“–CompOp
3 mathmath: repr_opow_auxβ‚‚, scale_opowAux, nf_opowAux
opowAux2 πŸ“–CompOp
1 mathmath: opow_def
repr πŸ“–CompOp
27 mathmath: nfBelow_iff_topBelow, repr_one, nf_repr_split', repr_mul, split_dvd, lt_def, oadd_mul_nfBelow, NFBelow.lt, repr_add, repr_scale, repr_zero, omega0_le_oadd, le_def, split_add_lt, repr_opow, repr_inj, fundamentalSequenceProp_inl_some, repr_le_repr, fundamentalSequenceProp_inr, repr_lt_repr, repr_ofNat, scale_opowAux, NFBelow.snd, nf_repr_split, NF.snd', repr_sub, NFBelow.repr_lt
repr' πŸ“–CompOpβ€”
scale πŸ“–CompOp
4 mathmath: repr_scale, split_eq_scale_split', scale_eq_mul, nf_scale
split πŸ“–CompOp
2 mathmath: split_eq_scale_split', opow_def
split' πŸ“–CompOpβ€”
sub πŸ“–CompOpβ€”
toString πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
NFBelow_zero πŸ“–mathematicalβ€”NFBelow
Ordinal
Ordinal.zero
ONote
instZero
β€”not_le_of_gt
NFBelow.lt
zero_le
Ordinal.canonicallyOrderedAdd
add_nf πŸ“–mathematicalβ€”NF
ONote
instAdd
β€”le_total
add_nfBelow
NFBelow.mono
add_nfBelow πŸ“–mathematicalNFBelowONote
instAdd
β€”NFBelow.mono
le_of_lt
NFBelow.lt
NFBelow.snd
NFBelow.oadd
NFBelow.fst
cmp_compares
NF.below_of_lt
cmp_compares πŸ“–mathematicalβ€”Ordering.Compares
ONote
Preorder.toLT
instPreorder
cmp
β€”oadd_pos
cmp.eq_4
NF.fst
oadd_lt_oadd_1
not_lt
ite_eq_iff
cmpUsing.eq_1
oadd_lt_oadd_2
NF.snd
oadd_lt_oadd_3
LE.le.eq_of_not_lt
eq_of_cmp_eq πŸ“–β€”cmpβ€”β€”le_antisymm_iff
not_lt
cmpUsing_eq_eq
cmp.eq_1
fastGrowing_def πŸ“–mathematicalfundamentalSequencefastGrowing
ONote
FundamentalSequenceProp
fundamentalSequence_has_prop
Nat.iterate
β€”fundamentalSequence_has_prop
fastGrowing.eq_1
fastGrowing_limit πŸ“–mathematicalfundamentalSequence
ONote
fastGrowingβ€”fundamentalSequence_has_prop
fastGrowing_def
fastGrowing_one πŸ“–mathematicalβ€”fastGrowing
ONote
instOne
β€”fastGrowing_succ
Nat.instAtLeastTwoHAddOfNat
two_mul
fastGrowing_zero
add_zero
Function.iterate_succ'
fastGrowing_succ πŸ“–mathematicalfundamentalSequence
ONote
fastGrowing
Nat.iterate
β€”fundamentalSequence_has_prop
fastGrowing_def
fastGrowing_two πŸ“–mathematicalβ€”fastGrowing
ONote
nat
Monoid.toNatPow
Nat.instMonoid
β€”fastGrowing_succ
fastGrowing_one
mul_left_iterate
fastGrowing_zero πŸ“–mathematicalβ€”fastGrowing
ONote
instZero
β€”fastGrowing_zero'
fastGrowing_zero' πŸ“–mathematicalfundamentalSequence
ONote
fastGrowingβ€”fundamentalSequence_has_prop
fastGrowing_def
fastGrowingΞ΅β‚€_one πŸ“–mathematicalβ€”fastGrowingΞ΅β‚€β€”Function.iterate_one
fastGrowing_one
mul_one
fastGrowingΞ΅β‚€_two πŸ“–mathematicalβ€”fastGrowingΞ΅β‚€β€”Function.iterate_one
fastGrowing_limit
fastGrowing_succ
fastGrowing_two
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.IsNatPowT.trans
fastGrowingΞ΅β‚€_zero πŸ“–mathematicalβ€”fastGrowingΞ΅β‚€β€”fastGrowing_zero
zero_add
fundamentalSequenceProp_inl_none πŸ“–mathematicalβ€”FundamentalSequenceProp
ONote
instZero
β€”β€”
fundamentalSequenceProp_inl_some πŸ“–mathematicalβ€”FundamentalSequenceProp
ONote
repr
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
NF
β€”β€”
fundamentalSequenceProp_inr πŸ“–mathematicalβ€”FundamentalSequenceProp
ONote
Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
repr
Preorder.toLT
instPreorder
NF
β€”β€”
fundamentalSequence_has_prop πŸ“–mathematicalβ€”FundamentalSequenceProp
fundamentalSequence
β€”fundamentalSequence.eq_2
PNat.natPred_add_one
FundamentalSequenceProp.eq_1
Ordinal.opow_zero
Nat.cast_succ
Nat.cast_zero
zero_add
mul_one
add_zero
Ordinal.succ_zero
Nat.succPNat_coe
mul_add_one
Ordinal.leftDistribClass
NF.oadd_zero
NF.zero
FundamentalSequenceProp.eq_2
Ordinal.opow_succ
Ordinal.instAddLeftStrictMono
Ordinal.instAddLeftReflectLT
Ordinal.opow_pos
Ordinal.omega0_pos
Ordinal.isSuccLimit_mul
Ordinal.isSuccLimit_omega0
Ordinal.mul_succ
Ordinal.natCast_succ
mul_lt_mul_of_pos_left
Ordinal.instPosMulStrictMono
Ordinal.nat_lt_omega0
NF.fst
Ordinal.isSuccLimit_add
NF.oadd
NF.below_of_lt'
repr.eq_2
zero_def
repr.eq_1
Ordinal.opow_lt_opow_iff_right
Ordinal.one_lt_omega0
FundamentalSequenceProp.eq_3
Ordinal.isSuccLimit_opow
PNat.one_coe
Nat.cast_one
Ordinal.add_succ
NFBelow.repr_lt
NF.snd'
LT.lt.trans
Order.lt_succ
Ordinal.instNoMaxOrder
NF.snd
oadd_lt_oadd_3
lt_trans
le_def πŸ“–mathematicalβ€”ONote
Preorder.toLE
instPreorder
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
repr
β€”β€”
lt_def πŸ“–mathematicalβ€”ONote
Preorder.toLT
instPreorder
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
repr
β€”β€”
mulNat_eq_mul πŸ“–mathematicalβ€”mulNat
ONote
instMul
ofNat
β€”β€”
mul_nf πŸ“–mathematicalβ€”NF
ONote
instMul
β€”NF.zero
oadd_mul_nfBelow
nfBelow_iff_topBelow πŸ“–mathematicalβ€”NFBelow
repr
NF
TopBelow
β€”Ordering.Compares.eq_lt
cmp_compares
NFBelow.fst
NFBelow.lt
NF.below_of_lt
NF.fst
nfBelow_ofNat πŸ“–mathematicalβ€”NFBelow
ofNat
Ordinal
Ordinal.one
β€”NFBelow.oadd
NF.zero
zero_lt_one
Ordinal.instZeroLEOneClass
Ordinal.instNeZeroOne
nf_mulNat πŸ“–mathematicalβ€”NF
mulNat
β€”mulNat_eq_mul
mul_nf
nf_ofNat
nf_ofNat πŸ“–mathematicalβ€”NF
ofNat
β€”nfBelow_ofNat
nf_one πŸ“–mathematicalβ€”NF
ONote
instOne
β€”ofNat_one
nf_ofNat
nf_opow πŸ“–mathematicalβ€”NF
ONote
instPow
β€”nf_repr_split
NF.oadd_zero
nf_repr_split'
split_eq_scale_split'
mulNat_eq_mul
NF.fst
mul_nf
nf_scale
nf_one
add_nf
nf_ofNat
nf_opowAux
nf_opowAux πŸ“–mathematicalβ€”NF
opowAux
β€”β€”
nf_repr_split πŸ“–mathematicalsplit
ONote
NF
repr
Ordinal
Ordinal.add
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
β€”nf_repr_split'
split_eq_scale_split'
repr_scale
nf_one
repr_one
Nat.cast_one
Ordinal.opow_one
nf_scale
nf_repr_split' πŸ“–mathematicalsplit'
ONote
NF
repr
Ordinal
Ordinal.add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Ordinal.monoidWithZero
Ordinal.omega0
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
β€”MulZeroClass.mul_zero
Nat.cast_zero
add_zero
Ordinal.opow_zero
one_mul
NF.zero_of_zero
zero_add
NF.snd
NF.fst
NF.zero
Ordinal.opow_add
Ordinal.add_sub_cancel_of_le
Ordinal.one_le_iff_ne_zero
NF.oadd
sub_nf
nf_one
repr_sub
repr_one
Nat.cast_one
NF.below_of_lt'
mul_lt_mul_iff_rightβ‚€
Ordinal.instPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Ordinal.omega0_pos
LE.le.trans_lt
le_self_add
Ordinal.canonicallyOrderedAdd
Ordinal.opow_one
NFBelow.repr_lt
NF.snd'
mul_assoc
mul_add
Ordinal.leftDistribClass
add_assoc
nf_scale πŸ“–mathematicalβ€”NF
scale
β€”scale_eq_mul
mul_nf
NF.oadd_zero
oadd_add πŸ“–mathematicalβ€”ONote
instAdd
oadd
addAux
β€”β€”
oadd_lt_oadd_1 πŸ“–mathematicalONote
Preorder.toLT
instPreorder
oaddβ€”lt_of_lt_of_le
NFBelow.repr_lt
NF.below_of_lt
omega0_le_oadd
oadd_lt_oadd_2 πŸ“–mathematicalPNat.valONote
Preorder.toLT
instPreorder
oadd
β€”LT.lt.trans_le
add_lt_add_right
Ordinal.instAddLeftStrictMono
NFBelow.repr_lt
NF.snd'
le_trans
Ordinal.mul_succ
mul_le_mul_iff_rightβ‚€
PosMulStrictMono.toPosMulMono
Ordinal.instPosMulStrictMono
PosMulStrictMono.toPosMulReflectLE
Ordinal.opow_pos
Ordinal.omega0_pos
Order.succ_le_iff
Ordinal.instNoMaxOrder
Nat.cast_lt
Ordinal.instAddLeftMono
Ordinal.instZeroLEOneClass
Ordinal.instCharZero
le_self_add
Ordinal.canonicallyOrderedAdd
oadd_lt_oadd_3 πŸ“–mathematicalONote
Preorder.toLT
instPreorder
oaddβ€”lt_def
repr.eq_def
add_lt_add_right
Ordinal.instAddLeftStrictMono
repr_lt_repr
oadd_mul πŸ“–mathematicalβ€”ONote
instMul
oadd
instZero
instDecidableEqONote
PNat
instMulPNat
instAdd
β€”β€”
oadd_mul_nfBelow πŸ“–mathematicalNFBelow
oadd
ONote
instMul
Ordinal
Ordinal.add
repr
β€”NFBelow.snd
NFBelow.oadd
NFBelow.fst
Ordinal.instAddLeftStrictMono
Ordinal.instAddLeftReflectLT
add_zero
add_lt_add_iff_left
lt_of_le_of_lt
zero_le
Ordinal.canonicallyOrderedAdd
NFBelow.lt
add_nf
repr_add
oadd_pos πŸ“–mathematicalβ€”ONote
Preorder.toLT
instPreorder
instZero
oadd
β€”lt_of_lt_of_le
Ordinal.opow_pos
Ordinal.omega0_pos
omega0_le_oadd
ofNat_one πŸ“–mathematicalβ€”ofNat
ONote
instOne
β€”β€”
ofNat_succ πŸ“–mathematicalβ€”ofNat
oadd
ONote
instZero
Nat.succPNat
β€”β€”
ofNat_zero πŸ“–mathematicalβ€”ofNat
ONote
instZero
β€”β€”
omega0_le_oadd πŸ“–mathematicalβ€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instPow
Ordinal.omega0
repr
oadd
β€”le_trans
zero_add
Nat.cast_one
mul_one
mul_le_mul_iff_rightβ‚€
PosMulStrictMono.toPosMulMono
Ordinal.instPosMulStrictMono
PosMulStrictMono.toPosMulReflectLE
Ordinal.opow_pos
Ordinal.omega0_pos
Nat.cast_le
Ordinal.instAddLeftMono
Ordinal.instZeroLEOneClass
Ordinal.instCharZero
le_self_add
Ordinal.canonicallyOrderedAdd
opow_def πŸ“–mathematicalβ€”ONote
instPow
opowAux2
split
β€”β€”
repr_add πŸ“–mathematicalβ€”repr
ONote
instAdd
Ordinal
Ordinal.add
β€”zero_add
NF.snd
add_nf
add_assoc
NF.fst
cmp_compares
Ordinal.add_absorp
NFBelow.repr_lt
NF.below_of_lt
Ordinal.opow_zero
lt_of_le_of_lt
le_self_add
Ordinal.canonicallyOrderedAdd
repr.eq_def
Nat.cast_one
mul_one
mul_le_mul_iff_rightβ‚€
PosMulStrictMono.toPosMulMono
Ordinal.instPosMulStrictMono
PosMulStrictMono.toPosMulReflectLE
Ordinal.opow_pos
Ordinal.omega0_pos
Nat.cast_le
Ordinal.instAddLeftMono
Ordinal.instZeroLEOneClass
Ordinal.instCharZero
PNat.pos
Nat.cast_add
mul_add
Ordinal.leftDistribClass
repr_inj πŸ“–mathematicalβ€”reprβ€”cmp_compares
ne_of_lt
ne_of_gt
repr_le_repr πŸ“–mathematicalONote
Preorder.toLE
instPreorder
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
repr
β€”le_def
repr_lt_repr πŸ“–mathematicalONote
Preorder.toLT
instPreorder
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
repr
β€”lt_def
repr_mul πŸ“–mathematicalβ€”repr
ONote
instMul
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Ordinal.monoidWithZero
β€”MulZeroClass.zero_mul
MulZeroClass.mul_zero
NF.snd
Ordinal.add_absorp
NFBelow.repr_lt
NF.snd'
zero_add
Nat.cast_one
mul_one
mul_le_mul_iff_rightβ‚€
PosMulStrictMono.toPosMulMono
Ordinal.instPosMulStrictMono
PosMulStrictMono.toPosMulReflectLE
Ordinal.opow_pos
Ordinal.omega0_pos
Nat.cast_le
Ordinal.instAddLeftMono
Ordinal.instZeroLEOneClass
Ordinal.instCharZero
PNat.ne_zero
Ordinal.natCast_mul
Ordinal.opow_zero
one_mul
NF.zero_of_zero
add_zero
Ordinal.natCast_succ
Ordinal.add_mul_succ
mul_assoc
repr_add
NF.fst
Ordinal.opow_add
mul_add
Ordinal.leftDistribClass
NF.zero
Ordinal.add_mul_of_isSuccLimit
Ordinal.isSuccLimit_opow_left
Ordinal.isSuccLimit_omega0
Ordinal.mul_omega0_dvd
Nat.cast_pos'
Ordinal.instNeZeroOne
PNat.pos
Ordinal.nat_lt_omega0
Ordinal.opow_one
Ordinal.opow_dvd_opow
Ordinal.one_le_iff_ne_zero
repr_ofNat πŸ“–mathematicalβ€”repr
ofNat
Ordinal
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
β€”Nat.cast_zero
Ordinal.opow_zero
Nat.cast_add
Nat.cast_one
one_mul
add_zero
repr_one πŸ“–mathematicalβ€”repr
ONote
instOne
Ordinal
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
β€”repr_ofNat
repr_opow πŸ“–mathematicalβ€”repr
ONote
instPow
Ordinal
Ordinal.instPow
β€”nf_repr_split
repr_one
Nat.cast_one
Nat.cast_zero
add_zero
Ordinal.opow_zero
Ordinal.zero_opow
nf_repr_split'
zero_add
Ordinal.one_opow
Nat.cast_succ
Ordinal.opow_add
Ordinal.opow_mul
Ordinal.opow_omega0
Ordinal.instNoMaxOrder
Ordinal.instAddLeftMono
Ordinal.instZeroLEOneClass
Ordinal.instCharZero
Ordinal.lt_omega0
Ordinal.add_one_eq_succ
Ordinal.natCast_pow
Nat.cast_add
Ordinal.opow_natCast
NF.of_dvd_omega0
split_dvd
split_add_lt
repr_add
NF.snd
nf_ofNat
repr_ofNat
split_eq_scale_split'
repr_mul
NF.fst
nf_scale
nf_one
repr_scale
Ordinal.opow_one
mul_one
add_assoc
repr_opow_aux₁
add_nf
mulNat_eq_mul
mul_nf
nf_opowAux
mul_assoc
Ordinal.opow_succ
scale_opowAux
mul_add
Ordinal.leftDistribClass
pow_succ
repr_opow_auxβ‚‚
repr_opow_aux₁ πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instPow
Ordinal.omega0
repr
Ordinal.add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Ordinal.monoidWithZero
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
PNat.val
β€”NF.oadd
NF.below_of_lt'
omega0_le_oadd
le_antisymm
Ordinal.opow_le_of_isSuccLimit
LT.lt.ne'
LT.lt.trans_le
Ordinal.opow_pos
Ordinal.omega0_pos
repr.eq_2
Ordinal.isSuccLimit_omega0
NFBelow.repr_lt
NF.below_of_lt
Order.lt_succ
Ordinal.instNoMaxOrder
LE.le.trans
Ordinal.opow_le_opow_left
LT.lt.le
Ordinal.opow_mul
le_or_gt
le_imp_le_of_le_of_le
Ordinal.opow_le_opow
le_refl
mul_le_mul_right
Ordinal.mulLeftMono
Order.le_succ
Ordinal.add_one_eq_succ
Ordinal.add_mul_succ
Ordinal.one_add_of_omega0_le
Order.succ_le_iff
mul_lt_mul_of_pos_left
Ordinal.instPosMulStrictMono
Order.IsSuccLimit.succ_lt
lt_of_le_of_ne'
zero_le
Ordinal.canonicallyOrderedAdd
le_of_lt
Ordinal.principal_mul_omega0
one_mul
mul_le_mul_left
Ordinal.mulRightMono
Ordinal.one_le_iff_ne_zero
repr_opow_auxβ‚‚ πŸ“–mathematicalOrdinal
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
Ordinal.monoidWithZero
Ordinal.omega0
repr
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.add
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
Ordinal.instPow
opowAux
ONote
instZero
instMul
oadd
ofNat
Order.succ
Ordinal.instSuccOrder
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
PNat.val
β€”Nat.cast_zero
Ordinal.succ_zero
Ordinal.opow_one
instIsEmptyFalse
Ordinal.opow_zero
one_mul
add_zero
Nat.cast_add
Nat.cast_one
MulZeroClass.mul_zero
opowAux.eq_1
opowAux.eq_3
mulNat_eq_mul
repr_add
nf_scale
mul_nf
nf_ofNat
NF.oadd
NF.below_of_lt'
lt_of_le_of_lt
le_self_add
Ordinal.canonicallyOrderedAdd
nf_opowAux
NF.zero
repr_scale
repr_mul
repr_ofNat
Ordinal.opow_mul
oadd_pos
Ordinal.opow_pos
Ordinal.omega0_pos
mul_one
lt_of_lt_of_le
Ordinal.add_one_eq_succ
Nat.cast_succ
Ordinal.nat_lt_omega0
Ordinal.opow_le_opow_right
Ordinal.one_le_iff_ne_zero
pos_iff_ne_zero
le_add_self
Ordinal.principal_add_omega0_opow
Ordinal.opow_succ
mul_assoc
mul_lt_mul_of_pos_left
Ordinal.instPosMulStrictMono
Ordinal.opow_add
NFBelow.repr_lt
NF.below_of_lt
Ordinal.instAddLeftStrictMono
Ordinal.instAddLeftReflectLT
add_lt_add_iff_left
Ordinal.mul_lt_omega0_opow
mul_le_mul_right
Ordinal.mulLeftMono
Order.succ_le_succ_iff
Ordinal.instNoMaxOrder
Nat.cast_le
Ordinal.instAddLeftMono
Ordinal.instZeroLEOneClass
Ordinal.instCharZero
le_of_lt
Ordinal.natCast_succ
dvd_add
Ordinal.leftDistribClass
dvd_mul_of_dvd_left
Ordinal.opow_dvd_opow
mul_add
add_assoc
Ordinal.add_mul_of_isSuccLimit
Ordinal.add_absorp
NF.snd'
Order.one_le_iff_pos
Ordinal.instNeZeroOne
Nat.cast_pos'
PNat.pos
Ordinal.isSuccLimit_iff_omega0_dvd
ne_of_gt
Ordinal.mul_omega0_dvd
Ordinal.opow_natCast
Ordinal.add_mul_succ
omega0_le_oadd
repr_scale πŸ“–mathematicalβ€”repr
scale
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Ordinal.monoidWithZero
Ordinal.instPow
Ordinal.omega0
β€”scale_eq_mul
repr_mul
NF.oadd_zero
Nat.cast_one
mul_one
add_zero
repr_sub πŸ“–mathematicalβ€”repr
ONote
instSub
Ordinal
Ordinal.sub
β€”Ordinal.zero_sub
Ordinal.sub_zero
NF.snd
cmp_compares
NF.fst
Ordinal.sub_eq_zero_iff_le
le_of_lt
oadd_lt_oadd_1
Ordinal.add_sub_add_cancel
oadd_lt_oadd_2
lt_of_le_of_ne
tsub_eq_zero_iff_le
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
PNat.eq
Nat.cast_add
Nat.cast_one
tsub_eq_iff_eq_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
add_comm
mul_add
Ordinal.leftDistribClass
add_assoc
Ordinal.sub_eq_of_add_eq
Ordinal.add_absorp
NFBelow.repr_lt
NF.snd'
le_trans
Ordinal.le_mul_left
Nat.cast_lt
Ordinal.instAddLeftMono
Ordinal.instZeroLEOneClass
Ordinal.instCharZero
le_self_add
Ordinal.canonicallyOrderedAdd
NF.below_of_lt
omega0_le_oadd
repr_zero πŸ“–mathematicalβ€”repr
ONote
instZero
Ordinal
Ordinal.zero
β€”β€”
scale_eq_mul πŸ“–mathematicalβ€”scale
ONote
instMul
oadd
PNat
instOfNatPNatOfNeZeroNat
instZero
β€”NF.snd
add_nf
NF.zero
repr_add
add_zero
NF.zero_of_zero
MulZeroClass.mul_zero
one_mul
scale_opowAux πŸ“–mathematicalβ€”repr
opowAux
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Ordinal.monoidWithZero
Ordinal.instPow
Ordinal.omega0
ONote
instZero
β€”MulZeroClass.mul_zero
Nat.cast_add
Nat.cast_one
add_zero
Ordinal.opow_zero
one_mul
opowAux.eq_1
opowAux.eq_3
mulNat_eq_mul
repr_add
nf_scale
add_nf
mul_nf
nf_ofNat
nf_opowAux
repr_scale
repr_mul
repr_ofNat
Ordinal.opow_add
mul_assoc
NF.zero
mul_add
Ordinal.leftDistribClass
split_add_lt πŸ“–mathematicalsplit
ONote
oadd
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.add
repr
AddMonoidWithOne.toNatCast
Ordinal.addMonoidWithOne
Ordinal.instPow
Ordinal.omega0
β€”nf_repr_split
NF.of_dvd_omega0
split_dvd
Ordinal.principal_add_omega0_opow
NFBelow.repr_lt
NF.snd'
lt_of_lt_of_le
Ordinal.nat_lt_omega0
Ordinal.opow_one
Ordinal.opow_le_opow_right
Ordinal.omega0_pos
Ordinal.one_le_iff_ne_zero
split_dvd πŸ“–mathematicalsplit
ONote
Ordinal
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
Ordinal.monoidWithZero
Ordinal.omega0
repr
β€”split_eq_scale_split'
nf_repr_split'
repr_scale
nf_one
repr_one
Nat.cast_one
Ordinal.opow_one
split_eq_scale_split' πŸ“–mathematicalsplit'
ONote
split
scale
instOne
β€”NF.snd
add_nf
nf_one
sub_nf
NF.fst
repr_add
repr_one
Nat.cast_one
repr_sub
NF.zero
Ordinal.add_sub_cancel_of_le
Ordinal.one_le_iff_ne_zero
sub_nf πŸ“–mathematicalβ€”NF
ONote
instSub
β€”sub_nfBelow
sub_nfBelow πŸ“–mathematicalNFBelowONote
instSub
β€”NFBelow.snd
NF.snd
cmp_compares
NFBelow.fst
NF.fst
NFBelow.mono
le_of_lt
NFBelow.lt
NFBelow.oadd
zero_add πŸ“–mathematicalβ€”ONote
instAdd
instZero
β€”β€”
zero_def πŸ“–mathematicalβ€”zero
ONote
instZero
β€”β€”
zero_lt_one πŸ“–mathematicalβ€”ONote
Preorder.toLT
instPreorder
instZero
instOne
β€”repr_one
Nat.cast_one
Ordinal.instZeroLEOneClass
Ordinal.instNeZeroOne

ONote.NF

Theorems

NameKindAssumesProvesValidatesDepends On
below_of_lt πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ONote.repr
ONote.NFBelow
ONote.oadd
β€”β€”
below_of_lt' πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ONote.repr
Ordinal.instPow
Ordinal.omega0
ONote.NFBelowβ€”below_of_lt
Ordinal.opow_lt_opow_iff_right
Ordinal.one_lt_omega0
lt_of_le_of_lt
ONote.omega0_le_oadd
fst πŸ“–mathematicalβ€”ONote.NFβ€”ONote.NFBelow.fst
oadd πŸ“–mathematicalONote.NFBelow
ONote.repr
ONote.NF
ONote.oadd
β€”ONote.NFBelow.oadd
Order.lt_succ
Ordinal.instNoMaxOrder
oadd_zero πŸ“–mathematicalβ€”ONote.NF
ONote.oadd
ONote
ONote.instZero
β€”oadd
of_dvd_omega0 πŸ“–β€”Ordinal
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
Ordinal.monoidWithZero
Ordinal.omega0
ONote.repr
ONote.oadd
β€”β€”Ordinal.opow_one
Ordinal.one_le_iff_ne_zero
of_dvd_omega0_opow
of_dvd_omega0_opow πŸ“–mathematicalOrdinal
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
Ordinal.monoidWithZero
Ordinal.instPow
Ordinal.omega0
ONote.repr
ONote.oadd
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
β€”zero
le_of_not_gt
not_le_of_gt
ONote.NFBelow.repr_lt
below_of_lt
Ordinal.le_of_dvd
Ordinal.dvd_add_iff
Dvd.dvd.mul_right
Ordinal.opow_dvd_opow
out πŸ“–mathematicalβ€”ONote.NFBelowβ€”β€”
snd πŸ“–mathematicalβ€”ONote.NFβ€”snd'
snd' πŸ“–mathematicalβ€”ONote.NFBelow
ONote.repr
β€”ONote.NFBelow.snd
zero πŸ“–mathematicalβ€”ONote.NF
ONote
ONote.instZero
β€”β€”
zero_of_zero πŸ“–β€”ONote
ONote.instZero
β€”β€”snd'

ONote.NFBelow

Theorems

NameKindAssumesProvesValidatesDepends On
fst πŸ“–mathematicalONote.NFBelow
ONote.oadd
ONote.NFβ€”β€”
lt πŸ“–mathematicalONote.NFBelow
ONote.oadd
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ONote.repr
β€”β€”
mono πŸ“–β€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
ONote.NFBelow
β€”β€”lt_of_lt_of_le
oadd πŸ“–mathematicalONote.NFBelow
ONote.repr
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ONote.oaddβ€”β€”
repr_lt πŸ“–mathematicalONote.NFBelowOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ONote.repr
Ordinal.instPow
Ordinal.omega0
β€”Ordinal.opow_pos
Ordinal.omega0_pos
ONote.repr.eq_2
LT.lt.trans_le
add_lt_add_right
Ordinal.instAddLeftStrictMono
Ordinal.mul_succ
le_imp_le_of_le_of_le
mul_le_mul_right
Ordinal.mulLeftMono
Order.succ_le_of_lt
Ordinal.nat_lt_omega0
le_refl
Ordinal.opow_succ
Ordinal.opow_le_opow
snd πŸ“–mathematicalONote.NFBelow
ONote.oadd
ONote.reprβ€”β€”

(root)

Definitions

NameCategoryTheorems
NONote πŸ“–CompOp
6 mathmath: NONote.repr_add, NONote.cmp_compares, NONote.lt_wf, NONote.repr_sub, NONote.repr_mul, NONote.instWellFoundedLT
ONote πŸ“–CompData
43 mathmath: ONote.repr_one, ONote.ofNat_succ, ONote.NFBelow_zero, ONote.zero_add, ONote.add_nfBelow, ONote.cmp_compares, ONote.repr_mul, ONote.ofNat_one, ONote.oadd_add, ONote.lt_def, ONote.oadd_mul_nfBelow, ONote.repr_add, ONote.repr_zero, ONote.nf_opow, ONote.fundamentalSequenceProp_inl_none, ONote.zero_lt_one, ONote.NF.oadd_zero, ONote.ofNat_zero, ONote.le_def, ONote.mulNat_eq_mul, ONote.repr_opow, ONote.sub_nf, ONote.fundamentalSequenceProp_inl_some, ONote.nf_one, ONote.sub_nfBelow, ONote.mul_nf, ONote.fundamentalSequenceProp_inr, ONote.opow_def, ONote.repr_opow_auxβ‚‚, ONote.oadd_lt_oadd_2, ONote.scale_eq_mul, ONote.fastGrowing_one, ONote.fastGrowing_zero, ONote.scale_opowAux, ONote.fastGrowing_def, ONote.oadd_pos, ONote.zero_def, ONote.oadd_mul, ONote.fastGrowing_two, ONote.repr_sub, NONote.NF, ONote.add_nf, ONote.NF.zero
instDecidableEqNONote πŸ“–CompOpβ€”
instDecidableEqONote πŸ“–CompOp
1 mathmath: ONote.oadd_mul

instDecidableEqONote

Definitions

NameCategoryTheorems
decEq πŸ“–CompOpβ€”

---

← Back to Index