📁 Source: Mathlib/SetTheory/Ordinal/Principal.lean
Principal
iSup
iterate_lt
sSup
add_absorp
add_omega0_opow
exists_lt_add_of_not_principal_add
isSuccLimit_of_principal_add
isSuccLimit_of_principal_mul
mul_eq_opow_log_succ
mul_lt_omega0_opow
mul_omega0
mul_omega0_dvd
mul_omega0_opow_opow
natCast_mul_omega0
natCast_opow_omega0
nfp_le_of_principal
not_bddAbove_principal
not_principal_iff
not_principal_iff_of_monotone
op_eq_self_of_principal
opow_omega0
principal_add_iff_add_left_eq_self
principal_add_iff_add_lt_ne_self
principal_add_iff_zero_or_omega0_opow
principal_add_mul_of_principal_add
principal_add_of_le_one
principal_add_of_principal_mul
principal_add_of_principal_mul_opow
principal_add_omega0
principal_add_omega0_opow
principal_add_one
principal_add_opow_of_principal_add
principal_iff_of_monotone
principal_mul_iff_le_two_or_omega0_opow_opow
principal_mul_iff_mul_left_eq
principal_mul_of_le_two
principal_mul_omega0
principal_mul_omega0_opow_opow
principal_mul_one
principal_mul_two
principal_one_iff
principal_opow_omega0
principal_swap_iff
principal_zero
principal_add_omega
principal_opow_ord
principal_add_ord
IsInitial.principal_mul
principal_mul_ord
IsInitial.principal_opow
principal_mul_omega
principal_opow_omega
IsInitial.principal_add
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPow
omega0
Preorder.toLE
add
add_sub_cancel_of_le
add_assoc
le_antisymm
nonpos_iff_eq_zero
canonicallyOrderedAdd
Order.lt_succ_iff
instNoMaxOrder
succ_zero
opow_zero
zero_add
le_refl
lt_mul_iff_of_isSuccLimit
isSuccLimit_omega0
opow_succ
le_imp_le_of_le_of_le
add_le_add_left
instAddRightMono
le_of_lt
mul_add
leftDistribClass
add_omega0
lt_opow_of_isSuccLimit
omega0_ne_zero
Order.IsNormal.le_iff_forall_le
Order.IsNormal.comp
isNormal_add_right
isNormal_opow
one_lt_omega0
add_le_add_right
instAddLeftMono
opow_le_opow
le_max_right
omega0_pos
max_lt
LT.lt.trans_le
opow_le_opow_right
le_max_left
LT.lt.le
le_add_self
lt_of_le_of_ne
sub_le_self
LE.le.not_gt
sub_le
one
Order.IsSuccLimit
isSuccLimit_iff
Order.isSuccPrelimit_iff_succ_lt
LT.lt.ne_bot
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
addMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
LT.lt.trans
Order.lt_succ
succ_one
ne_of_gt
Order.succ
instSuccOrder
log
Order.IsNormal.apply_of_isSuccLimit
isNormal_mul_right
pos_iff_ne_zero
iSup_le_iff
small_Iio
one_lt_two
instZeroLEOneClass
instNeZeroOne
instAddLeftStrictMono
opow_pos
zero_lt_one
LE.le.trans
mul_le_mul_left
mulRightMono
lt_mul_succ_div
mul_assoc
mul_le_mul_right
mulLeftMono
Order.IsSuccLimit.succ_lt
div_lt
lt_opow_succ_log_self
opow_log_le_self
zero
zero_or_succ_or_isSuccLimit
lt_irrefl
Order.IsNormal.lt_iff_exists_lt
lt_imp_lt_of_le_of_le
mul_lt_mul_of_pos_left
instPosMulStrictMono
LE.le.trans_lt
mul_le_mul'
opow_lt_opow_iff_right
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
eq_or_ne
opow_one
isSuccLimit_opow_left
opow_add
one_mul
Order.one_le_iff_pos
Nat.cast_zero
instCharZero
nat_lt_omega0
Nat.cast_one
nfp
nfp_le
Principal.iterate_lt
BddAbove
setOf
le_nfp
Monotone
Function.swap
Order.IsNormal
instLinearOrder
LE.le.antisymm'
StrictMono.le_apply
wellFoundedLT
Order.IsNormal.strictMono
LE.le.antisymm
opow_le_of_isSuccLimit
one_le_iff_ne_zero
right_le_opow
lt_or_ge
le_one_iff
not_lt_zero
lt_one_iff_zero
LT.lt.ne
Set
Set.instMembership
Set.range
lt_or_eq_of_le
lt_omega0
not_lt_of_ge
MulZeroClass.mul_zero
Nat.cast_succ
mul_add_one
le_self_add
eq_zero_or_pos
MulZeroClass.zero_mul
Order.succ_le_iff
Left.add_lt_add
lt_or_gt_of_ne
lt_of_le_of_lt
one_add_one_eq_two
mul_one
add_le_add
zero_opow
opow_mul
le_or_gt
LT.lt.ne'
natCast_mul
opow_natCast
Ordinal.Principal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
Ordinal.partialOrder
Nat.iterate
Function.iterate_zero
Function.iterate_succ'
SupSet.sSup
csSup_empty
bot_eq_zero'
Ordinal.canonicallyOrderedAdd
Set.eq_empty_or_nonempty
lt_csSup_iff
max_rec'
lt_max_of_lt_left
lt_max_of_lt_right
csSup_of_not_bddAbove
---
← Back to Index