Documentation Verification Report

Principal

📁 Source: Mathlib/SetTheory/Ordinal/Principal.lean

Statistics

MetricCount
DefinitionsPrincipal
1
TheoremsiSup, iterate_lt, sSup, add_absorp, add_omega0_opow, exists_lt_add_of_not_principal_add, isSuccLimit_of_principal_add, isSuccLimit_of_principal_mul, mul_eq_opow_log_succ, mul_lt_omega0_opow, mul_omega0, mul_omega0_dvd, mul_omega0_opow_opow, natCast_mul_omega0, natCast_opow_omega0, nfp_le_of_principal, not_bddAbove_principal, not_principal_iff, not_principal_iff_of_monotone, op_eq_self_of_principal, opow_omega0, principal_add_iff_add_left_eq_self, principal_add_iff_add_lt_ne_self, principal_add_iff_zero_or_omega0_opow, principal_add_mul_of_principal_add, principal_add_of_le_one, principal_add_of_principal_mul, principal_add_of_principal_mul_opow, principal_add_omega0, principal_add_omega0_opow, principal_add_one, principal_add_opow_of_principal_add, principal_iff_of_monotone, principal_mul_iff_le_two_or_omega0_opow_opow, principal_mul_iff_mul_left_eq, principal_mul_of_le_two, principal_mul_omega0, principal_mul_omega0_opow_opow, principal_mul_one, principal_mul_two, principal_one_iff, principal_opow_omega0, principal_swap_iff, principal_zero
44
Total45

Ordinal

Definitions

NameCategoryTheorems
Principal 📖MathDef
31 mathmath: principal_add_omega, principal_mul_of_le_two, principal_add_of_le_one, principal_opow_ord, principal_add_ord, principal_mul_omega0, IsInitial.principal_mul, principal_opow_omega0, not_bddAbove_principal, principal_add_iff_add_left_eq_self, principal_mul_ord, IsInitial.principal_opow, not_principal_iff_of_monotone, principal_mul_omega, principal_add_iff_zero_or_omega0_opow, principal_add_iff_add_lt_ne_self, not_principal_iff, principal_one_iff, principal_add_one, principal_mul_two, principal_mul_iff_mul_left_eq, principal_add_omega0, principal_mul_omega0_opow_opow, principal_opow_omega, IsInitial.principal_add, principal_add_omega0_opow, principal_swap_iff, principal_mul_one, principal_iff_of_monotone, principal_zero, principal_mul_iff_le_two_or_omega0_opow_opow

Theorems

NameKindAssumesProvesValidatesDepends On
add_absorp 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPow
omega0
Preorder.toLE
addadd_sub_cancel_of_le
add_assoc
add_omega0_opow
add_omega0_opow 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPow
omega0
addle_antisymm
nonpos_iff_eq_zero
canonicallyOrderedAdd
Order.lt_succ_iff
instNoMaxOrder
succ_zero
opow_zero
zero_add
le_refl
lt_mul_iff_of_isSuccLimit
isSuccLimit_omega0
opow_succ
le_imp_le_of_le_of_le
add_le_add_left
instAddRightMono
le_of_lt
mul_add
leftDistribClass
add_omega0
lt_opow_of_isSuccLimit
omega0_ne_zero
Order.IsNormal.le_iff_forall_le
Order.IsNormal.comp
isNormal_add_right
isNormal_opow
one_lt_omega0
add_le_add_right
instAddLeftMono
opow_le_opow
le_max_right
omega0_pos
max_lt
LT.lt.trans_le
opow_le_opow_right
le_max_left
LT.lt.le
le_add_self
exists_lt_add_of_not_principal_add 📖mathematicalPrincipal
Ordinal
add
Preorder.toLT
PartialOrder.toPreorder
partialOrder
not_principal_iff
lt_of_le_of_ne
sub_le_self
LE.le.not_gt
sub_le
add_sub_cancel_of_le
LT.lt.le
isSuccLimit_of_principal_add 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
Principal
add
Order.IsSuccLimitisSuccLimit_iff
Order.isSuccPrelimit_iff_succ_lt
LT.lt.ne_bot
isSuccLimit_of_principal_mul 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
addMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
Principal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Order.IsSuccLimitNat.instAtLeastTwoHAddOfNat
isSuccLimit_of_principal_add
LT.lt.trans
Order.lt_succ
instNoMaxOrder
succ_one
principal_add_of_principal_mul
ne_of_gt
mul_eq_opow_log_succ 📖mathematicalPrincipal
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
addMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
instPow
Order.succ
instSuccOrder
log
Nat.instAtLeastTwoHAddOfNat
le_antisymm
isSuccLimit_of_principal_mul
Order.IsNormal.apply_of_isSuccLimit
isNormal_mul_right
pos_iff_ne_zero
canonicallyOrderedAdd
iSup_le_iff
small_Iio
LT.lt.trans
one_lt_two
instZeroLEOneClass
instNeZeroOne
instAddLeftStrictMono
opow_pos
zero_lt_one
LE.le.trans
mul_le_mul_left
mulRightMono
le_of_lt
lt_mul_succ_div
mul_assoc
opow_succ
mul_le_mul_right
mulLeftMono
LT.lt.le
Order.IsSuccLimit.succ_lt
div_lt
lt_opow_succ_log_self
le_imp_le_of_le_of_le
opow_log_le_self
le_refl
mul_lt_omega0_opow 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
instPow
omega0
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
zero_or_succ_or_isSuccLimit
lt_irrefl
Order.IsNormal.lt_iff_exists_lt
isNormal_mul_right
opow_pos
omega0_pos
isSuccLimit_omega0
opow_succ
lt_imp_lt_of_le_of_le
mul_le_mul_left
mulRightMono
le_of_lt
le_refl
mul_assoc
mul_lt_mul_of_pos_left
instPosMulStrictMono
principal_mul_omega0
isNormal_opow
one_lt_omega0
LE.le.trans_lt
mul_le_mul'
mulLeftMono
opow_lt_opow_iff_right
Order.IsSuccLimit.succ_lt
mul_omega0 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
omega0
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
principal_mul_iff_mul_left_eq
principal_mul_omega0
mul_omega0_dvd 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
omega0
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
monoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
mul_assoc
mul_omega0
mul_omega0_opow_opow 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
instPow
omega0
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
eq_or_ne
opow_zero
opow_one
mul_omega0
le_antisymm
lt_opow_of_isSuccLimit
omega0_ne_zero
isSuccLimit_opow_left
isSuccLimit_omega0
le_imp_le_of_le_of_le
mul_le_mul_left
mulRightMono
le_of_lt
le_refl
opow_add
add_omega0_opow
one_mul
Order.one_le_iff_pos
instZeroLEOneClass
instNeZeroOne
natCast_mul_omega0 📖mathematicalOrdinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
AddMonoidWithOne.toNatCast
addMonoidWithOne
omega0
mul_omega0
Nat.cast_zero
instAddLeftMono
instZeroLEOneClass
instCharZero
nat_lt_omega0
natCast_opow_omega0 📖mathematicalOrdinal
instPow
AddMonoidWithOne.toNatCast
addMonoidWithOne
omega0
opow_omega0
Nat.cast_one
instAddLeftMono
instZeroLEOneClass
instCharZero
nat_lt_omega0
nfp_le_of_principal 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Principal
Preorder.toLE
nfp
nfp_le
LT.lt.le
Principal.iterate_lt
not_bddAbove_principal 📖mathematicalBddAbove
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
setOf
Principal
LE.le.not_gt
LE.le.trans
le_nfp
Order.lt_succ
instNoMaxOrder
not_principal_iff 📖mathematicalPrincipal
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Preorder.toLE
not_principal_iff_of_monotone 📖mathematicalMonotone
Ordinal
PartialOrder.toPreorder
partialOrder
Function.swap
Principal
Preorder.toLT
Preorder.toLE
principal_iff_of_monotone
op_eq_self_of_principal 📖Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Order.IsNormal
instLinearOrder
Principal
Order.IsSuccLimit
LE.le.antisymm'
StrictMono.le_apply
wellFoundedLT
Order.IsNormal.strictMono
Order.IsNormal.apply_of_isSuccLimit
iSup_le_iff
small_Iio
LT.lt.le
opow_omega0 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
omega0
instPowLE.le.antisymm
opow_le_of_isSuccLimit
one_le_iff_ne_zero
le_of_lt
isSuccLimit_omega0
LT.lt.le
principal_opow_omega0
right_le_opow
principal_add_iff_add_left_eq_self 📖mathematicalPrincipal
Ordinal
add
lt_or_ge
op_eq_self_of_principal
isNormal_add_right
isSuccLimit_of_principal_add
le_one_iff
not_lt_zero
canonicallyOrderedAdd
lt_one_iff_zero
zero_add
Order.IsNormal.strictMono
principal_add_iff_add_lt_ne_self 📖mathematicalPrincipal
Ordinal
add
LT.lt.ne
exists_lt_add_of_not_principal_add
principal_add_iff_zero_or_omega0_opow 📖mathematicalPrincipal
Ordinal
add
zero
Set
Set.instMembership
Set.range
instPow
omega0
eq_or_ne
principal_add_iff_add_left_eq_self
lt_or_eq_of_le
opow_log_le_self
lt_opow_succ_log_self
one_lt_omega0
lt_mul_iff_of_isSuccLimit
isSuccLimit_omega0
opow_succ
lt_omega0
not_lt_of_ge
Nat.cast_zero
MulZeroClass.mul_zero
zero_add
Nat.cast_succ
mul_add_one
leftDistribClass
add_assoc
le_self_add
canonicallyOrderedAdd
add_omega0_opow
principal_add_mul_of_principal_add 📖mathematicalPrincipal
Ordinal
add
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
eq_zero_or_pos
canonicallyOrderedAdd
MulZeroClass.zero_mul
principal_zero
MulZeroClass.mul_zero
lt_mul_iff_of_isSuccLimit
isSuccLimit_of_principal_add
lt_of_le_of_ne
succ_zero
Order.succ_le_iff
instNoMaxOrder
mul_add
leftDistribClass
Left.add_lt_add
instAddLeftStrictMono
instAddRightMono
principal_add_of_le_one 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
one
Principal
add
le_one_iff
principal_zero
principal_add_one
principal_add_of_principal_mul 📖mathematicalPrincipal
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
addNat.instAtLeastTwoHAddOfNat
lt_or_gt_of_ne
succ_one
principal_add_of_le_one
Order.lt_succ_iff
instNoMaxOrder
lt_of_le_of_lt
one_add_one_eq_two
mul_add
leftDistribClass
mul_one
add_le_add
instAddLeftMono
instAddRightMono
le_max_left
le_max_right
max_lt
principal_add_of_principal_mul_opow 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
one
Principal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
instPow
addopow_lt_opow_iff_right
opow_add
principal_add_omega0 📖mathematicalPrincipal
Ordinal
add
omega0
principal_add_iff_add_left_eq_self
add_omega0
principal_add_omega0_opow 📖mathematicalPrincipal
Ordinal
add
instPow
omega0
principal_add_iff_add_left_eq_self
add_omega0_opow
principal_add_one 📖mathematicalPrincipal
Ordinal
add
one
principal_one_iff
zero_add
principal_add_opow_of_principal_add 📖mathematicalPrincipal
Ordinal
add
instPowprincipal_add_iff_zero_or_omega0_opow
eq_or_ne
opow_zero
principal_add_one
zero_opow
opow_mul
principal_add_omega0_opow
principal_iff_of_monotone 📖mathematicalMonotone
Ordinal
PartialOrder.toPreorder
partialOrder
Function.swap
Principal
Preorder.toLT
le_or_gt
LE.le.trans_lt
LT.lt.le
principal_mul_iff_le_two_or_omega0_opow_opow 📖mathematicalPrincipal
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
addMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
Set
Set.instMembership
Set.range
instPow
omega0
Nat.instAtLeastTwoHAddOfNat
le_or_gt
principal_add_iff_zero_or_omega0_opow
principal_add_of_principal_mul
LT.lt.ne'
not_lt_zero
canonicallyOrderedAdd
principal_add_of_principal_mul_opow
one_lt_omega0
opow_zero
instAddLeftMono
instZeroLEOneClass
instCharZero
principal_mul_of_le_two
principal_mul_omega0_opow_opow
principal_mul_iff_mul_left_eq 📖mathematicalPrincipal
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Nat.instAtLeastTwoHAddOfNat
le_or_gt
le_antisymm
Order.lt_succ_iff
instNoMaxOrder
succ_one
LT.lt.trans_le
succ_zero
Order.succ_le_iff
one_mul
op_eq_self_of_principal
isNormal_mul_right
isSuccLimit_of_principal_mul
eq_or_ne
MulZeroClass.zero_mul
pos_iff_ne_zero
canonicallyOrderedAdd
Order.IsNormal.strictMono
principal_mul_of_le_two 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
addMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
Principal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
Nat.instAtLeastTwoHAddOfNat
lt_or_eq_of_le
Order.lt_succ_iff
instNoMaxOrder
succ_one
lt_one_iff_zero
principal_zero
principal_mul_one
principal_mul_two
principal_mul_omega0 📖mathematicalPrincipal
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
omega0
lt_omega0
natCast_mul
nat_lt_omega0
principal_mul_omega0_opow_opow 📖mathematicalPrincipal
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
instPow
omega0
principal_mul_iff_mul_left_eq
mul_omega0_opow_opow
principal_mul_one 📖mathematicalPrincipal
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
one
principal_one_iff
MulZeroClass.zero_mul
principal_mul_two 📖mathematicalPrincipal
Ordinal
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
monoidWithZero
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
addMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
Nat.instAtLeastTwoHAddOfNat
succ_one
Order.lt_succ_iff
instNoMaxOrder
mul_one
mul_le_mul'
mulLeftMono
mulRightMono
principal_one_iff 📖mathematicalPrincipal
Ordinal
one
zero
lt_one_iff_zero
zero_lt_one
instZeroLEOneClass
instNeZeroOne
principal_opow_omega0 📖mathematicalPrincipal
Ordinal
instPow
omega0
lt_omega0
opow_natCast
principal_swap_iff 📖mathematicalPrincipal
Function.swap
Ordinal
principal_zero 📖mathematicalPrincipal
Ordinal
zero
canonicallyOrderedAdd

Ordinal.Principal

Theorems

NameKindAssumesProvesValidatesDepends On
iSup 📖mathematicalOrdinal.PrincipaliSup
Ordinal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
sSup
iterate_lt 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.Principal
Nat.iterateFunction.iterate_zero
Function.iterate_succ'
sSup 📖mathematicalOrdinal.PrincipalSupSet.sSup
Ordinal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
csSup_empty
bot_eq_zero'
Ordinal.canonicallyOrderedAdd
Set.eq_empty_or_nonempty
lt_csSup_iff
max_rec'
lt_max_of_lt_left
lt_max_of_lt_right
csSup_of_not_bddAbove

---

← Back to Index