Documentation Verification Report

Rank

📁 Source: Mathlib/SetTheory/Ordinal/Rank.lean

Statistics

MetricCount
Definitionsrank, rank
2
Theoremsmem_range_rank_of_le, rank_eq, rank_lt_of_rel, mem_range_rank_of_le, rank_eq, rank_eq_typein, rank_lt_of_rel, rank_strictAnti, rank_strictMono
9
Total11

Acc

Definitions

NameCategoryTheorems
rank 📖CompOp
2 mathmath: rank_eq, rank_lt_of_rel

Theorems

NameKindAssumesProvesValidatesDepends On
mem_range_rank_of_le 📖Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
rank
LE.le.eq_or_lt
Ordinal.lt_iSup_iff
small_subtype
UnivLE.small
UnivLE.self
rank_eq
Order.lt_succ_iff
Ordinal.instNoMaxOrder
rank_eq 📖mathematicalrank
iSup
Ordinal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
Order.succ
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
rank_lt_of_rel 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
rank
LT.lt.trans_le
Order.lt_succ
Ordinal.instNoMaxOrder
rank_eq
Ordinal.le_iSup
small_subtype
UnivLE.small
univLE_of_max
UnivLE.self

IsWellFounded

Definitions

NameCategoryTheorems
rank 📖CompOp
7 mathmath: PSet.rank_eq_wfRank, WellFoundedGT.rank_strictAnti, rank_lt_of_rel, rank_eq_typein, rank_eq, WellFoundedLT.rank_strictMono, ZFSet.rank_eq_wfRank

Theorems

NameKindAssumesProvesValidatesDepends On
mem_range_rank_of_le 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
rank
Set
Set.instMembership
Set.range
Acc.mem_range_rank_of_le
apply
rank_eq 📖mathematicalrank
iSup
Ordinal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
Order.succ
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
Acc.rank_eq
apply
rank_eq_typein 📖mathematicalrank
IsWellOrder.toIsWellFounded
DFunLike.coe
RelEmbedding
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
Ordinal.typein
IsWellOrder.toIsWellFounded
InitialSeg.eq
instIsStrictTotalOrderOfIsWellOrder
isWellOrder_lt
Ordinal.wellFoundedLT
WellFoundedLT.rank_strictMono
mem_range_rank_of_le
LT.lt.le
PrincipalSeg.mem_range_of_rel
instIsTransLt
rank_lt_of_rel 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
rank
Acc.rank_lt_of_rel
apply

WellFoundedGT

Theorems

NameKindAssumesProvesValidatesDepends On
rank_strictAnti 📖mathematicalStrictAnti
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
IsWellFounded.rank
Preorder.toLT
IsWellFounded.rank_lt_of_rel

WellFoundedLT

Theorems

NameKindAssumesProvesValidatesDepends On
rank_strictMono 📖mathematicalStrictMono
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
IsWellFounded.rank
Preorder.toLT
IsWellFounded.rank_lt_of_rel

---

← Back to Index