Documentation Verification Report

Veblen

šŸ“ Source: Mathlib/SetTheory/Ordinal/Veblen.lean

Statistics

MetricCount
Definitionsepsilon, gamma, invVeblen₁, invVeblenā‚‚, termĪ“_, termΓ₀, termε_, termε₀, veblen, veblenWith
10
TheoremsveblenWith, veblenWith_zero, apply_lt_veblenWith_apply_iff, cmp_veblen, cmp_veblenWith, epsilon0_eq_nfp, epsilon0_le_of_omega0_opow_le, epsilon0_lt_gamma, epsilon_eq_deriv, epsilon_pos, epsilon_succ_eq_nfp, epsilon_zero_eq_nfp, epsilon_zero_le_of_omega0_opow_le, epsilon_zero_lt_gamma, gamma0_eq_nfp, gamma0_le_of_veblen_le, gamma_inj, gamma_le_gamma, gamma_lt_gamma, gamma_ne_zero, gamma_pos, gamma_succ_eq_nfp, gamma_zero_eq_nfp, gamma_zero_le_of_veblen_le, invVeblen₁_epsilon, invVeblen₁_eq_iff, invVeblen₁_gamma, invVeblen₁_le, invVeblen₁_lt_iff, invVeblen₁_of_lt_opow, invVeblen₁_veblen, invVeblen₁_zero, invVeblenā‚‚_epsilon, invVeblenā‚‚_eq_iff, invVeblenā‚‚_gamma, invVeblenā‚‚_le, invVeblenā‚‚_le_iff, invVeblenā‚‚_lt, invVeblenā‚‚_lt_iff, invVeblenā‚‚_of_lt_opow, invVeblenā‚‚_veblen, invVeblenā‚‚_zero, isNormal_gamma, isNormal_veblen, isNormal_veblenWith, isNormal_veblenWith', isNormal_veblenWith_zero, isNormal_veblen_zero, iterate_omega0_opow_lt_epsilon0, iterate_omega0_opow_lt_epsilon_zero, iterate_veblen_lt_gamma0, iterate_veblen_lt_gamma_zero, le_invVeblenā‚‚_iff, left_le_veblen, left_le_veblenWith, lt_epsilon0, lt_epsilon_zero, lt_gamma0, lt_gamma_zero, lt_invVeblenā‚‚_iff, lt_veblen, lt_veblen_iff_invVeblen₁_le, lt_veblen_invVeblen₁, mem_range_gamma, mem_range_veblen, mem_range_veblenWith, mem_range_veblen_iff_le_invVeblen₁, monotone_gamma, natCast_lt_epsilon, natCast_lt_gamma, omega0_lt_epsilon, omega0_lt_gamma, omega0_opow_epsilon, opow_lt_veblen_opow_iff, right_le_veblen, right_le_veblenWith, strictMono_gamma, veblenWith_apply_eq_apply_iff, veblenWith_eq_self_of_le, veblenWith_eq_veblenWith_iff, veblenWith_inj, veblenWith_injective, veblenWith_le_veblenWith_iff, veblenWith_le_veblenWith_iff_right, veblenWith_left_monotone, veblenWith_lt_veblenWith_iff, veblenWith_lt_veblenWith_iff_right, veblenWith_lt_veblenWith_veblenWith_iff, veblenWith_mem_range, veblenWith_of_ne_zero, veblenWith_pos, veblenWith_right_strictMono, veblenWith_succ, veblenWith_veblenWith_eq_veblenWith_iff, veblenWith_veblenWith_of_lt, veblenWith_zero, veblenWith_zero_inj, veblenWith_zero_le_veblenWith_zero, veblenWith_zero_lt_veblenWith_zero, veblenWith_zero_strictMono, veblen_eq_of_lt_invVeblen₁, veblen_eq_opow_iff, veblen_eq_self_of_le, veblen_eq_veblen_iff, veblen_gamma_zero, veblen_inj, veblen_injective, veblen_invVeblen₁_invVeblenā‚‚, veblen_le_veblen_iff, veblen_le_veblen_iff_right, veblen_left_monotone, veblen_lt_veblen_iff, veblen_lt_veblen_iff_right, veblen_lt_veblen_veblen_iff, veblen_mem_range_opow, veblen_of_ne_zero, veblen_opow_eq_opow_iff, veblen_pos, veblen_right_strictMono, veblen_succ, veblen_veblen_eq_veblen_iff, veblen_veblen_of_lt, veblen_zero, veblen_zero_apply, veblen_zero_inj, veblen_zero_le_veblen_zero, veblen_zero_lt_veblen_zero, veblen_zero_strictMono
128
Total138

Ordinal

Definitions

NameCategoryTheorems
epsilon šŸ“–CompOp
16 mathmath: epsilon_eq_deriv, epsilon_zero_lt_gamma, epsilon_zero_le_of_omega0_opow_le, lt_epsilon_zero, iterate_omega0_opow_lt_epsilon0, epsilon_succ_eq_nfp, epsilon0_lt_gamma, omega0_lt_epsilon, epsilon0_eq_nfp, epsilon_zero_eq_nfp, epsilon0_le_of_omega0_opow_le, epsilon_pos, iterate_omega0_opow_lt_epsilon_zero, natCast_lt_epsilon, lt_epsilon0, omega0_opow_epsilon
gamma šŸ“–CompOp
26 mathmath: gamma_le_gamma, gamma_zero_eq_nfp, epsilon_zero_lt_gamma, veblen_gamma_zero, gamma_inj, gamma0_le_of_veblen_le, lt_gamma0, iterate_veblen_lt_gamma0, invVeblenā‚‚_gamma, gamma_pos, gamma_zero_le_of_veblen_le, strictMono_gamma, iterate_veblen_lt_gamma_zero, epsilon0_lt_gamma, isNormal_gamma, mem_range_gamma, omega0_lt_gamma, gamma0_eq_nfp, lt_gamma_zero, gamma_lt_gamma, invVeblen₁_lt_iff, invVeblen₁_eq_iff, natCast_lt_gamma, gamma_succ_eq_nfp, monotone_gamma, invVeblen₁_gamma
invVeblen₁ šŸ“–CompOp
18 mathmath: invVeblenā‚‚_eq_iff, le_invVeblenā‚‚_iff, invVeblen₁_zero, invVeblenā‚‚_le_iff, invVeblen₁_le, invVeblen₁_of_lt_opow, mem_range_veblen_iff_le_invVeblen₁, veblen_invVeblen₁_invVeblenā‚‚, lt_veblen_iff_invVeblen₁_le, invVeblen₁_lt_iff, invVeblenā‚‚_lt_iff, lt_invVeblenā‚‚_iff, veblen_eq_opow_iff, invVeblen₁_veblen, lt_veblen_invVeblen₁, invVeblen₁_epsilon, invVeblen₁_eq_iff, invVeblen₁_gamma
invVeblenā‚‚ šŸ“–CompOp
14 mathmath: invVeblenā‚‚_epsilon, invVeblenā‚‚_eq_iff, le_invVeblenā‚‚_iff, invVeblenā‚‚_zero, invVeblenā‚‚_le_iff, invVeblenā‚‚_gamma, veblen_invVeblen₁_invVeblenā‚‚, invVeblenā‚‚_of_lt_opow, invVeblenā‚‚_le, invVeblenā‚‚_lt_iff, invVeblenā‚‚_lt, lt_invVeblenā‚‚_iff, veblen_eq_opow_iff, invVeblenā‚‚_veblen
termĪ“_ šŸ“–CompOp—
termΓ₀ šŸ“–CompOp—
termε_ šŸ“–CompOp—
termε₀ šŸ“–CompOp—
veblen šŸ“–CompOp
50 mathmath: invVeblenā‚‚_eq_iff, le_invVeblenā‚‚_iff, gamma_zero_eq_nfp, veblen_gamma_zero, veblen_eq_of_lt_invVeblen₁, invVeblenā‚‚_le_iff, isNormal_veblen, lt_gamma0, veblen_zero_lt_veblen_zero, veblen_of_ne_zero, veblen_opow_eq_opow_iff, iterate_veblen_lt_gamma0, veblen_zero, cmp_veblen, veblen_inj, veblen_veblen_of_lt, veblen_zero_le_veblen_zero, isNormal_veblen_zero, mem_range_veblen_iff_le_invVeblen₁, veblen_eq_veblen_iff, veblen_invVeblen₁_invVeblenā‚‚, iterate_veblen_lt_gamma_zero, veblen_le_veblen_iff, veblen_le_veblen_iff_right, mem_range_veblen, veblen_lt_veblen_veblen_iff, veblen_mem_range_opow, mem_range_gamma, gamma0_eq_nfp, lt_gamma_zero, opow_lt_veblen_opow_iff, lt_veblen_iff_invVeblen₁_le, veblen_lt_veblen_iff, lt_veblen, invVeblenā‚‚_lt_iff, veblen_veblen_eq_veblen_iff, lt_invVeblenā‚‚_iff, veblen_right_strictMono, veblen_succ, veblen_zero_apply, left_le_veblen, veblen_lt_veblen_iff_right, veblen_injective, lt_veblen_invVeblen₁, veblen_zero_inj, veblen_zero_strictMono, right_le_veblen, gamma_succ_eq_nfp, veblen_pos, veblen_left_monotone
veblenWith šŸ“–CompOp
32 mathmath: veblenWith_le_veblenWith_iff_right, IsNormal.veblenWith, veblenWith_zero_lt_veblenWith_zero, veblenWith_apply_eq_apply_iff, veblenWith_right_strictMono, veblenWith_zero_strictMono, veblenWith_veblenWith_of_lt, veblenWith_zero_inj, isNormal_veblenWith, veblenWith_lt_veblenWith_iff, left_le_veblenWith, veblenWith_veblenWith_eq_veblenWith_iff, veblenWith_lt_veblenWith_iff_right, veblenWith_inj, veblenWith_le_veblenWith_iff, cmp_veblenWith, veblenWith_lt_veblenWith_veblenWith_iff, veblenWith_succ, veblenWith_injective, veblenWith_zero, veblenWith_zero_le_veblenWith_zero, isNormal_veblenWith', mem_range_veblenWith, veblenWith_eq_veblenWith_iff, veblenWith_of_ne_zero, veblenWith_pos, isNormal_veblenWith_zero, veblenWith_left_monotone, IsNormal.veblenWith_zero, veblenWith_mem_range, right_le_veblenWith, apply_lt_veblenWith_apply_iff

Theorems

NameKindAssumesProvesValidatesDepends On
apply_lt_veblenWith_apply_iff šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
partialOrder
veblenWith
—veblenWith_zero
veblenWith_lt_veblenWith_veblenWith_iff
zero_le
canonicallyOrderedAdd
cmp_veblen šŸ“–mathematical—cmp
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
LinearOrder.toDecidableLT
instLinearOrder
veblen
—cmp_veblenWith
isNormal_opow
one_lt_omega0
cmp_veblenWith šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
cmp
Preorder.toLT
PartialOrder.toPreorder
partialOrder
LinearOrder.toDecidableLT
veblenWith
—lt_trichotomy
veblenWith_veblenWith_of_lt
StrictMono.cmp_map_eq
veblenWith_right_strictMono
LT.lt.cmp_eq_lt
cmp_self_eq_eq
LT.lt.cmp_eq_gt
epsilon0_eq_nfp šŸ“–mathematical—epsilon
Ordinal
zero
nfp
instPow
omega0
—epsilon_zero_eq_nfp
epsilon0_le_of_omega0_opow_le šŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instPow
omega0
epsilon
zero
—epsilon_zero_le_of_omega0_opow_le
epsilon0_lt_gamma šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
epsilon
zero
gamma
—epsilon_zero_lt_gamma
epsilon_eq_deriv šŸ“–mathematical—epsilon
deriv
Ordinal
instPow
omega0
—epsilon.eq_1
succ_zero
veblen_succ
veblen_zero
epsilon_pos šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
epsilon
—veblen_pos
epsilon_succ_eq_nfp šŸ“–mathematical—epsilon
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
nfp
instPow
omega0
—epsilon_eq_deriv
deriv_succ
epsilon_zero_eq_nfp šŸ“–mathematical—epsilon
Ordinal
zero
nfp
instPow
omega0
—epsilon_eq_deriv
deriv_zero_right
epsilon_zero_le_of_omega0_opow_le šŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instPow
omega0
epsilon
zero
—epsilon_zero_eq_nfp
nfp_le_fp
opow_le_opow_iff_right
one_lt_omega0
zero_le
canonicallyOrderedAdd
epsilon_zero_lt_gamma šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
epsilon
zero
gamma
—LE.le.trans_lt'
gamma_le_gamma
zero_le
canonicallyOrderedAdd
Function.iterate_one
veblen_zero
opow_zero
iterate_veblen_lt_gamma_zero
gamma0_eq_nfp šŸ“–mathematical—gamma
Ordinal
zero
nfp
veblen
—gamma_zero_eq_nfp
gamma0_le_of_veblen_le šŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
veblen
zero
gamma—gamma_zero_le_of_veblen_le
gamma_inj šŸ“–mathematical—gamma—StrictMono.injective
strictMono_gamma
gamma_le_gamma šŸ“–mathematical—Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
gamma
—StrictMono.le_iff_le
strictMono_gamma
gamma_lt_gamma šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
gamma
—StrictMono.lt_iff_lt
strictMono_gamma
gamma_ne_zero šŸ“–ā€”ā€”ā€”ā€”LT.lt.ne'
gamma_pos
gamma_pos šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
gamma
—natCast_lt_gamma
gamma_succ_eq_nfp šŸ“–mathematical—gamma
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
nfp
veblen
zero
—deriv_succ
gamma_zero_eq_nfp šŸ“–mathematical—gamma
Ordinal
zero
nfp
veblen
—deriv_zero_right
gamma_zero_le_of_veblen_le šŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
veblen
zero
gamma—gamma_zero_eq_nfp
nfp_le_fp
veblen_left_monotone
zero_le
canonicallyOrderedAdd
invVeblen₁_epsilon šŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
epsilon
invVeblen₁
one
—invVeblen₁_veblen
invVeblen₁_eq_iff šŸ“–mathematical—invVeblen₁
Ordinal
zero
Set
Set.instMembership
Set.range
gamma
—mem_range_gamma
LE.le.antisymm'
left_le_veblen
veblen_eq_of_lt_invVeblen₁
Ne.bot_lt
Eq.trans_ne
bot_eq_zero
veblen_zero_apply
veblen_invVeblen₁_invVeblenā‚‚
canonicallyOrderedAdd
invVeblen₁_zero
invVeblen₁_gamma
invVeblen₁_gamma šŸ“–mathematical—invVeblen₁
gamma
—veblen_gamma_zero
invVeblen₁_veblen
veblen_pos
invVeblen₁_le šŸ“–mathematical—Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
invVeblen₁
—csInf_le'
LT.lt.ne'
lt_veblen
invVeblen₁_lt_iff šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
invVeblen₁
Set
Set.instMembership
Set.range
gamma
—LE.le.lt_iff_ne
invVeblen₁_le
invVeblen₁_eq_iff
invVeblen₁_of_lt_opow šŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPow
omega0
invVeblen₁
zero
—nonpos_iff_eq_zero
canonicallyOrderedAdd
lt_veblen_iff_invVeblen₁_le
veblen_zero
invVeblen₁_veblen šŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
veblen
invVeblen₁—le_antisymm
lt_veblen_iff_invVeblen₁_le
veblen_lt_veblen_iff_right
mem_range_veblen_iff_le_invVeblen₁
eq_zero_or_pos
canonicallyOrderedAdd
veblen_zero
veblen_zero_apply
veblen_veblen_of_lt
invVeblen₁_zero šŸ“–mathematical—invVeblen₁
Ordinal
zero
—invVeblen₁_of_lt_opow
opow_zero
instZeroLEOneClass
instNeZeroOne
invVeblenā‚‚_epsilon šŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
epsilon
invVeblen₂—invVeblenā‚‚_veblen
one_ne_zero
instNeZeroOne
invVeblenā‚‚_eq_iff šŸ“–mathematical—invVeblenā‚‚
Ordinal
instPow
omega0
veblen
invVeblen₁
—veblen_invVeblen₁_invVeblenā‚‚
invVeblenā‚‚_gamma šŸ“–mathematical—invVeblenā‚‚
gamma
Ordinal
zero
—veblen_gamma_zero
invVeblenā‚‚_veblen
gamma_ne_zero
veblen_pos
invVeblenā‚‚_le šŸ“–mathematical—Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
invVeblenā‚‚
—eq_zero_or_pos
canonicallyOrderedAdd
invVeblenā‚‚_le_iff
veblen_zero
le_refl
veblen_zero_apply
veblen_eq_of_lt_invVeblen₁
LT.lt.le
invVeblenā‚‚_lt
invVeblenā‚‚_le_iff šŸ“–mathematical—Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
invVeblenā‚‚
instPow
omega0
veblen
invVeblen₁
—veblen_le_veblen_iff_right
veblen_invVeblen₁_invVeblenā‚‚
invVeblenā‚‚_lt šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
invVeblenā‚‚
instPow
omega0
—invVeblenā‚‚_lt_iff
opow_lt_veblen_opow_iff
lt_veblen_invVeblen₁
invVeblenā‚‚_lt_iff šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
invVeblenā‚‚
instPow
omega0
veblen
invVeblen₁
—veblen_lt_veblen_iff_right
veblen_invVeblen₁_invVeblenā‚‚
invVeblenā‚‚_of_lt_opow šŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPow
omega0
invVeblen₂—invVeblenā‚‚_eq_iff
invVeblen₁_of_lt_opow
veblen_zero_apply
invVeblenā‚‚_veblen šŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
veblen
invVeblen₂—invVeblenā‚‚_eq_iff
invVeblen₁_veblen
veblen_zero_apply
veblen_veblen_of_lt
Ne.bot_lt
invVeblenā‚‚_zero šŸ“–mathematical—invVeblenā‚‚
Ordinal
zero
—invVeblenā‚‚_of_lt_opow
opow_zero
instZeroLEOneClass
instNeZeroOne
isNormal_gamma šŸ“–mathematical—Order.IsNormal
Ordinal
instLinearOrder
gamma
—isNormal_deriv
isNormal_veblen šŸ“–mathematical—Order.IsNormal
Ordinal
instLinearOrder
veblen
—isNormal_veblenWith
isNormal_opow
one_lt_omega0
isNormal_veblenWith šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
veblenWith—eq_or_ne
veblenWith_zero
isNormal_veblenWith'
isNormal_veblenWith' šŸ“–mathematical—Order.IsNormal
Ordinal
instLinearOrder
veblenWith
—veblenWith_of_ne_zero
isNormal_derivFamily
small_Iio
isNormal_veblenWith_zero šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
veblenWith—Order.isNormal_iff
veblenWith_zero_strictMono
veblenWith_of_ne_zero
Order.IsSuccLimit.ne_bot
derivFamily_zero
nfpFamily_le
veblenWith_zero
canonicallyOrderedAdd
bot_eq_zero'
Order.IsSuccLimit.bot_lt
Order.IsSuccLimit.succ_lt
max_lt
LE.le.trans
StrictMono.monotone
veblenWith_right_strictMono
veblenWith_left_monotone
le_max_right
Order.le_succ
veblenWith_veblenWith_of_lt
Order.lt_succ_iff
instNoMaxOrder
le_max_left
le_refl
isNormal_veblen_zero šŸ“–mathematical—Order.IsNormal
Ordinal
instLinearOrder
veblen
zero
—isNormal_veblenWith_zero
isNormal_opow
one_lt_omega0
opow_zero
instZeroLEOneClass
instNeZeroOne
iterate_omega0_opow_lt_epsilon0 šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Nat.iterate
instPow
omega0
zero
epsilon
—iterate_omega0_opow_lt_epsilon_zero
iterate_omega0_opow_lt_epsilon_zero šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Nat.iterate
instPow
omega0
zero
epsilon
—epsilon_zero_eq_nfp
iterate_lt_nfp
Order.IsNormal.strictMono
isNormal_opow
one_lt_omega0
opow_zero
instZeroLEOneClass
instNeZeroOne
iterate_veblen_lt_gamma0 šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Nat.iterate
veblen
zero
gamma
—iterate_veblen_lt_gamma_zero
iterate_veblen_lt_gamma_zero šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Nat.iterate
veblen
zero
gamma
—gamma_zero_eq_nfp
iterate_lt_nfp
veblen_zero_strictMono
veblen_zero
opow_zero
instZeroLEOneClass
instNeZeroOne
le_invVeblenā‚‚_iff šŸ“–mathematical—Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
invVeblenā‚‚
veblen
invVeblen₁
instPow
omega0
—veblen_le_veblen_iff_right
veblen_invVeblen₁_invVeblenā‚‚
left_le_veblen šŸ“–mathematical—Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
veblen
—left_le_veblenWith
isNormal_opow
one_lt_omega0
opow_zero
instZeroLEOneClass
instNeZeroOne
left_le_veblenWith šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
Preorder.toLE
veblenWith
—LE.le.trans
StrictMono.le_apply
wellFoundedLT
veblenWith_zero_strictMono
StrictMono.monotone
veblenWith_right_strictMono
zero_le
canonicallyOrderedAdd
lt_epsilon0 šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
epsilon
zero
Nat.iterate
instPow
omega0
—lt_epsilon_zero
lt_epsilon_zero šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
epsilon
zero
Nat.iterate
instPow
omega0
—epsilon_zero_eq_nfp
lt_nfp_iff
lt_gamma0 šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
gamma
zero
Nat.iterate
veblen
—lt_gamma_zero
lt_gamma_zero šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
gamma
zero
Nat.iterate
veblen
—gamma_zero_eq_nfp
lt_nfp_iff
lt_invVeblenā‚‚_iff šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
invVeblenā‚‚
veblen
invVeblen₁
instPow
omega0
—veblen_lt_veblen_iff_right
veblen_invVeblen₁_invVeblenā‚‚
lt_veblen šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
veblen
—eq_zero_or_pos
canonicallyOrderedAdd
veblen_zero
opow_zero
instZeroLEOneClass
instNeZeroOne
LE.le.trans_lt
left_le_veblen
lt_veblen_iff_invVeblen₁_le šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
veblen
Preorder.toLE
invVeblen₁
—lt_or_ge
veblen_eq_of_lt_invVeblen₁
LT.lt.trans_le
lt_veblen_invVeblen₁
veblen_left_monotone
lt_veblen_invVeblen₁ šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
veblen
invVeblen₁
—LE.le.lt_of_ne'
right_le_veblen
csInf_mem
wellFoundedLT
LT.lt.ne'
lt_veblen
mem_range_gamma šŸ“–mathematical—Ordinal
Set
Set.instMembership
Set.range
gamma
veblen
zero
—mem_range_deriv
isNormal_veblen_zero
mem_range_veblen šŸ“–mathematical—Ordinal
Set
Set.instMembership
Set.range
veblen
—mem_range_veblenWith
isNormal_opow
one_lt_omega0
mem_range_veblenWith šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Set
Set.instMembership
Set.range
veblenWith
—veblenWith_of_ne_zero
mem_range_derivFamily
small_Iio
isNormal_veblenWith
mem_range_veblen_iff_le_invVeblen₁ šŸ“–mathematical—Ordinal
Set
Set.instMembership
Set.range
veblen
instPow
omega0
Preorder.toLE
PartialOrder.toPreorder
partialOrder
invVeblen₁
—lt_trichotomy
veblen_opow_eq_opow_iff
veblen_eq_of_lt_invVeblen₁
LT.lt.le
veblen_zero
mem_range_veblen
le_rfl
LT.lt.ne'
lt_veblen_invVeblen₁
veblen_veblen_of_lt
LT.lt.not_ge
monotone_gamma šŸ“–mathematical—Monotone
Ordinal
PartialOrder.toPreorder
partialOrder
gamma
—Order.IsNormal.monotone
isNormal_gamma
natCast_lt_epsilon šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
AddMonoidWithOne.toNatCast
addMonoidWithOne
epsilon
—LT.lt.trans
nat_lt_omega0
omega0_lt_epsilon
natCast_lt_gamma šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
AddMonoidWithOne.toNatCast
addMonoidWithOne
gamma
—LT.lt.trans
nat_lt_omega0
omega0_lt_gamma
omega0_lt_epsilon šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
omega0
epsilon
—lt_of_lt_of_le
Function.iterate_one
opow_zero
opow_one
iterate_omega0_opow_lt_epsilon_zero
StrictMono.monotone
veblen_right_strictMono
zero_le
canonicallyOrderedAdd
omega0_lt_gamma šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
omega0
gamma
—LT.lt.trans
omega0_lt_epsilon
epsilon_zero_lt_gamma
omega0_opow_epsilon šŸ“–mathematical—Ordinal
instPow
omega0
epsilon
—epsilon_eq_deriv
deriv_fp
isNormal_opow
one_lt_omega0
opow_lt_veblen_opow_iff šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instPow
omega0
veblen
—apply_lt_veblenWith_apply_iff
isNormal_opow
one_lt_omega0
right_le_veblen šŸ“–mathematical—Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
veblen
—right_le_veblenWith
isNormal_opow
one_lt_omega0
right_le_veblenWith šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
partialOrder
veblenWith
—StrictMono.le_apply
wellFoundedLT
veblenWith_right_strictMono
strictMono_gamma šŸ“–mathematical—StrictMono
Ordinal
PartialOrder.toPreorder
partialOrder
gamma
—Order.IsNormal.strictMono
isNormal_gamma
veblenWith_apply_eq_apply_iff šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
veblenWith—veblenWith_zero
veblenWith_veblenWith_eq_veblenWith_iff
zero_le
canonicallyOrderedAdd
veblenWith_eq_self_of_le šŸ“–ā€”Order.IsNormal
Ordinal
instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
partialOrder
veblenWith
——LE.le.eq_or_lt
veblenWith_veblenWith_of_lt
veblenWith_eq_veblenWith_iff šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
veblenWith
Preorder.toLT
PartialOrder.toPreorder
partialOrder
—cmp_eq_eq_iff
cmp_veblenWith
cmp.congr_simp
cmp_self_eq_eq
veblenWith_inj šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
veblenWith—veblenWith_injective
veblenWith_injective šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
veblenWith—StrictMono.injective
veblenWith_right_strictMono
veblenWith_le_veblenWith_iff šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
partialOrder
veblenWith
Preorder.toLT
—not_lt
cmp_eq_gt_iff
cmp_veblenWith
cmp.congr_simp
cmp_self_eq_eq
veblenWith_le_veblenWith_iff_right šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
partialOrder
veblenWith
—StrictMono.le_iff_le
veblenWith_right_strictMono
veblenWith_left_monotone šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Monotone
PartialOrder.toPreorder
partialOrder
veblenWith
—monotone_iff_forall_lt
veblenWith_veblenWith_of_lt
StrictMono.monotone
veblenWith_right_strictMono
right_le_veblenWith
veblenWith_lt_veblenWith_iff šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
partialOrder
veblenWith
—cmp_eq_lt_iff
cmp_veblenWith
cmp.congr_simp
cmp_self_eq_eq
veblenWith_lt_veblenWith_iff_right šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
partialOrder
veblenWith
—StrictMono.lt_iff_lt
veblenWith_right_strictMono
veblenWith_lt_veblenWith_veblenWith_iff šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Preorder.toLT
veblenWith
—LE.le.lt_iff_ne'
right_le_veblenWith
veblenWith_veblenWith_eq_veblenWith_iff
veblenWith_mem_range šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Set
Set.instMembership
Set.range
veblenWith
—eq_zero_or_pos
canonicallyOrderedAdd
veblenWith_zero
veblenWith_veblenWith_of_lt
veblenWith_of_ne_zero šŸ“–mathematical—veblenWith
derivFamily
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
Set
Set.instMembership
—veblenWith.eq_1
veblenWith_pos šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
veblenWith—veblenWith_zero
LT.lt.trans_le
Order.IsNormal.monotone
zero_le
canonicallyOrderedAdd
eq_zero_or_pos
veblenWith_veblenWith_of_lt
veblenWith_right_strictMono šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
StrictMono
PartialOrder.toPreorder
partialOrder
veblenWith
—Order.IsNormal.strictMono
isNormal_veblenWith
veblenWith_succ šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
veblenWith
Order.succ
PartialOrder.toPreorder
partialOrder
instSuccOrder
deriv
—deriv_eq_enumOrd
isNormal_veblenWith
veblenWith_of_ne_zero
succ_ne_zero
derivFamily_eq_enumOrd
small_Iio
Set.ext
Set.mem_iInter
Order.lt_succ
instNoMaxOrder
Order.lt_succ_iff_eq_or_lt
Function.mem_fixedPoints_iff
veblenWith_veblenWith_of_lt
veblenWith_veblenWith_eq_veblenWith_iff šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLE
PartialOrder.toPreorder
partialOrder
veblenWith——
veblenWith_veblenWith_of_lt šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
partialOrder
veblenWith—mem_range_veblenWith
LT.lt.ne_bot
veblenWith_zero šŸ“–mathematical—veblenWith
Ordinal
zero
—veblenWith.eq_1
veblenWith_zero_inj šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
veblenWith—StrictMono.injective
veblenWith_zero_strictMono
veblenWith_zero_le_veblenWith_zero šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
Preorder.toLE
veblenWith
—StrictMono.le_iff_le
veblenWith_zero_strictMono
veblenWith_zero_lt_veblenWith_zero šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
veblenWith—StrictMono.lt_iff_lt
veblenWith_zero_strictMono
veblenWith_zero_strictMono šŸ“–mathematicalOrder.IsNormal
Ordinal
instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
StrictMono
veblenWith
—veblenWith_veblenWith_of_lt
veblenWith_lt_veblenWith_iff_right
veblenWith_pos
veblen_eq_of_lt_invVeblen₁ šŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
invVeblen₁
veblen—notMem_of_lt_csInf'
veblen_eq_opow_iff šŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
veblen
instPow
omega0
invVeblen₁
invVeblenā‚‚
—eq_zero_or_pos
canonicallyOrderedAdd
invVeblen₁_of_lt_opow
veblen_zero
invVeblenā‚‚_of_lt_opow
veblen_veblen_of_lt
veblen_zero_apply
one_lt_omega0
invVeblen₁_veblen
invVeblenā‚‚_veblen
LT.lt.ne'
veblen_invVeblen₁_invVeblenā‚‚
veblen_eq_self_of_le šŸ“–ā€”Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
veblen
——veblenWith_eq_self_of_le
isNormal_opow
one_lt_omega0
veblen_eq_veblen_iff šŸ“–mathematical—veblen
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
—veblenWith_eq_veblenWith_iff
isNormal_opow
one_lt_omega0
veblen_gamma_zero šŸ“–mathematical—veblen
gamma
Ordinal
zero
—deriv_fp
isNormal_veblen_zero
veblen_inj šŸ“–mathematical—veblen—veblen_injective
veblen_injective šŸ“–mathematical—Ordinal
veblen
—veblenWith_injective
isNormal_opow
one_lt_omega0
veblen_invVeblen₁_invVeblenā‚‚ šŸ“–mathematical—veblen
invVeblen₁
invVeblenā‚‚
Ordinal
instPow
omega0
—mem_range_veblen_iff_le_invVeblen₁
le_rfl
veblen_le_veblen_iff šŸ“–mathematical—Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
veblen
Preorder.toLT
—veblenWith_le_veblenWith_iff
isNormal_opow
one_lt_omega0
veblen_le_veblen_iff_right šŸ“–mathematical—Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
veblen
—veblenWith_le_veblenWith_iff_right
isNormal_opow
one_lt_omega0
veblen_left_monotone šŸ“–mathematical—Monotone
Ordinal
PartialOrder.toPreorder
partialOrder
veblen
—veblenWith_left_monotone
isNormal_opow
one_lt_omega0
veblen_lt_veblen_iff šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
veblen
—veblenWith_lt_veblenWith_iff
isNormal_opow
one_lt_omega0
veblen_lt_veblen_iff_right šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
veblen
—veblenWith_lt_veblenWith_iff_right
isNormal_opow
one_lt_omega0
veblen_lt_veblen_veblen_iff šŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Preorder.toLT
veblen
—veblenWith_lt_veblenWith_veblenWith_iff
isNormal_opow
one_lt_omega0
veblen_mem_range_opow šŸ“–mathematical—Ordinal
Set
Set.instMembership
Set.range
instPow
omega0
veblen
—veblenWith_mem_range
isNormal_opow
one_lt_omega0
veblen_of_ne_zero šŸ“–mathematical—veblen
derivFamily
Set.Elem
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
Set
Set.instMembership
—veblenWith_of_ne_zero
veblen_opow_eq_opow_iff šŸ“–mathematical—veblen
Ordinal
instPow
omega0
—veblenWith_apply_eq_apply_iff
isNormal_opow
one_lt_omega0
veblen_pos šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
zero
veblen
—veblenWith_pos
isNormal_opow
one_lt_omega0
opow_zero
instZeroLEOneClass
instNeZeroOne
veblen_right_strictMono šŸ“–mathematical—StrictMono
Ordinal
PartialOrder.toPreorder
partialOrder
veblen
—veblenWith_right_strictMono
isNormal_opow
one_lt_omega0
veblen_succ šŸ“–mathematical—veblen
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
deriv
—veblenWith_succ
isNormal_opow
one_lt_omega0
veblen_veblen_eq_veblen_iff šŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
veblen—veblenWith_veblenWith_eq_veblenWith_iff
isNormal_opow
one_lt_omega0
veblen_veblen_of_lt šŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
veblen—veblenWith_veblenWith_of_lt
isNormal_opow
one_lt_omega0
veblen_zero šŸ“–mathematical—veblen
Ordinal
zero
instPow
omega0
—veblen.eq_1
veblenWith_zero
veblen_zero_apply šŸ“–mathematical—veblen
Ordinal
zero
instPow
omega0
—veblen_zero
veblen_zero_inj šŸ“–mathematical—veblen
Ordinal
zero
—StrictMono.injective
veblen_zero_strictMono
veblen_zero_le_veblen_zero šŸ“–mathematical—Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
veblen
zero
—StrictMono.le_iff_le
veblen_zero_strictMono
veblen_zero_lt_veblen_zero šŸ“–mathematical—Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
veblen
zero
—StrictMono.lt_iff_lt
veblen_zero_strictMono
veblen_zero_strictMono šŸ“–mathematical—StrictMono
Ordinal
PartialOrder.toPreorder
partialOrder
veblen
zero
—veblenWith_zero_strictMono
isNormal_opow
one_lt_omega0
opow_zero
instZeroLEOneClass
instNeZeroOne

Ordinal.IsNormal

Theorems

NameKindAssumesProvesValidatesDepends On
veblenWith šŸ“–mathematicalOrder.IsNormal
Ordinal
Ordinal.instLinearOrder
Ordinal.veblenWith—Ordinal.isNormal_veblenWith
veblenWith_zero šŸ“–mathematicalOrder.IsNormal
Ordinal
Ordinal.instLinearOrder
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.zero
Ordinal.veblenWith—Ordinal.isNormal_veblenWith_zero

---

← Back to Index