Documentation Verification Report

Algebra

πŸ“ Source: Mathlib/SetTheory/PGame/Algebra.lean

Statistics

MetricCount
DefinitionsaddCongr, negCongr, subCongr, addAssocRelabelling, addCommRelabelling, addZeroRelabelling, down, instAdd, instInvolutiveNeg, instNatCast, instNeg, instNegZeroClass, instSub, neg, negAddRelabelling, toLeftMovesAdd, toLeftMovesNeg, toRightMovesAdd, toRightMovesNeg, uniqueStarLeftMoves, uniqueStarRightMoves, up, zeroAddRelabelling
23
Theoremsadd, add_left, add_right, neg, of_neg, sub, addLeftMono, addLeftStrictMono, addRightMono, addRightStrictMono, add_assoc, add_assoc_equiv, add_comm, add_comm_equiv, add_comm_le, add_congr, add_congr_left, add_congr_right, add_eq_zero, add_lf_add_left, add_lf_add_of_le_of_lf, add_lf_add_of_lf_of_le, add_lf_add_right, add_moveLeft_inl, add_moveLeft_inr, add_moveRight_inl, add_moveRight_inr, add_neg_cancel_equiv, add_neg_cancel_le_zero, add_zero, add_zero_equiv, down_leftMoves, down_moveLeft, down_moveRight, down_neg, down_rightMoves, exists_leftMoves_neg, exists_rightMoves_neg, forall_leftMoves_neg, forall_rightMoves_neg, identical_zero, identical_zero_iff, instZeroLEOneClass, isEmpty_leftMoves_add, isEmpty_nat_rightMoves, isEmpty_rightMoves_add, isOption_neg, isOption_neg_neg, le_iff_sub_nonneg, le_neg_iff, leftMoves_add, leftMoves_add_cases, leftMoves_neg, leftMoves_neg_cases, lf_iff_sub_zero_lf, lf_neg_iff, lt_iff_sub_pos, lt_neg_iff, memα΅£_add_iff, memα΅£_neg_iff, memβ‚—_add_iff, memβ‚—_neg_iff, mk_add_moveLeft, mk_add_moveLeft_inl, mk_add_moveLeft_inr, mk_add_moveRight, mk_add_moveRight_inl, mk_add_moveRight_inr, moveLeft_neg, moveLeft_neg_toLeftMovesNeg, moveRight_neg, moveRight_neg_toRightMovesNeg, nat_succ, neg_add, neg_add_cancel_equiv, neg_add_cancel_le_zero, neg_add_le, neg_add_rev, neg_def, neg_down, neg_equiv_iff, neg_equiv_neg_iff, neg_equiv_zero_iff, neg_fuzzy_iff, neg_fuzzy_neg_iff, neg_fuzzy_zero_iff, neg_identical_neg, neg_insertLeft_neg, neg_insertRight_neg, neg_le_iff, neg_le_neg_iff, neg_le_zero_iff, neg_lf_iff, neg_lf_neg_iff, neg_lf_zero_iff, neg_lt_iff, neg_lt_neg_iff, neg_lt_zero_iff, neg_ofLists, neg_star, neg_sub', neg_up, rightMoves_add, rightMoves_add_cases, rightMoves_neg, rightMoves_neg_cases, star_fuzzy_down, star_fuzzy_up, star_fuzzy_zero, star_leftMoves, star_lf_zero, star_moveLeft, star_moveRight, star_rightMoves, sub_congr, sub_congr_left, sub_congr_right, sub_self_equiv, sub_zero, sub_zero_eq_add_zero, up_leftMoves, up_moveLeft, up_moveRight, up_neg, up_rightMoves, zero_add, zero_add_equiv, zero_equiv_neg_iff, zero_fuzzy_neg_iff, zero_le_add_neg_cancel, zero_le_neg_add_cancel, zero_le_neg_iff, zero_lf_neg_iff, zero_lf_one, zero_lf_star, zero_lt_neg_iff, zero_lt_one
137
Total160

SetTheory.PGame

Definitions

NameCategoryTheorems
addAssocRelabelling πŸ“–CompOpβ€”
addCommRelabelling πŸ“–CompOpβ€”
addZeroRelabelling πŸ“–CompOpβ€”
down πŸ“–CompOp
8 mathmath: down_leftMoves, star_fuzzy_down, neg_up, down_moveRight, down_neg, down_moveLeft, down_rightMoves, neg_down
instAdd πŸ“–CompOp
83 mathmath: nim_add_equiv_zero_iff, birthday_add, rightMoves_add, right_distrib_equiv, mk_mul_moveRight_inl, addLeftMono, grundyValue_nim_add_nim, add_moveLeft_inl, Impartial.add_self, neg_mk_mul_moveRight_inl, mk_add_moveRight_inl, leftMoves_add, add_moveRight_inr, mul_moveRight_inl, mul_moveRight_inr, neg_add, mul_moveLeft_inl, neg_mk_mul_moveLeft_inr, addRightMono, mk_add_moveLeft, addRightStrictMono, Identical.add, nat_succ, mul_moveLeft_inr, sub_zero_eq_add_zero, add_eq_zero, add_comm_le, mk_add_moveLeft_inr, Identical.add_left, add_lf_add_right, quot_left_distrib, zero_add_equiv, left_distrib_equiv, add_congr_left, add_comm_equiv, add_lf_add_of_lf_of_le, Impartial.equiv_iff_add_equiv_zero, zero_add, add_lf_add_left, add_assoc_equiv, nim_add_fuzzy_zero_iff, add_assoc, Numeric.add, neg_add_cancel_equiv, add_zero_equiv, neg_add_rev, add_congr, add_neg_cancel_equiv, memβ‚—_add_iff, mk_add_moveRight, zero_le_add_neg_cancel, add_moveRight_inl, add_moveLeft_inr, zero_le_neg_add_cancel, add_powHalf_succ_self_eq_powHalf, add_lf_add_of_le_of_lf, neg_add_le, mk_add_moveRight_inr, isEmpty_leftMoves_add, mk_mul_moveLeft_inl, mk_mul_moveRight_inr, quot_right_distrib, Impartial.impartial_add, Ordinal.toPGame_nadd, Impartial.equiv_iff_add_equiv_zero', mk_add_moveLeft_inl, neg_mk_mul_moveLeft_inl, mk_mul_moveLeft_inr, half_add_half_equiv_one, memα΅£_add_iff, neg_mk_mul_moveRight_inr, add_congr_right, addLeftStrictMono, add_comm, quot_add, Surreal.mk_add, add_neg_cancel_le_zero, neg_add_cancel_le_zero, add_zero, nim_add_nim_equiv, Identical.add_right, grundyValue_add, isEmpty_rightMoves_add
instInvolutiveNeg πŸ“–CompOpβ€”
instNatCast πŸ“–CompOp
6 mathmath: quot_natCast, nat_succ, Ordinal.toPGame_natCast, birthday_natCast, isEmpty_nat_rightMoves, numeric_nat
instNeg πŸ“–CompOp
94 mathmath: Identical.neg, Surreal.Multiplication.P2_neg_left, exists_leftMoves_neg, Surreal.Multiplication.ih4_neg, Surreal.Multiplication.P24_neg_right, quot_neg_mul, neg_lf_neg_iff, isOption_neg, neg_le_neg_iff, neg_mk_mul_moveRight_inl, neg_lt_zero_iff, neg_lt_neg_iff, isOption_neg_neg, quot_mul_neg, mulOption_neg_neg, neg_star, rightMoves_mul_iff, neg_add, Surreal.Multiplication.ih1_neg_left, neg_mk_mul_moveLeft_inr, lt_neg_iff, neg_equiv_iff, neg_ofLists, neg_fuzzy_zero_iff, neg_insertRight_neg, neg_fuzzy_neg_iff, Surreal.Multiplication.mulOption_lt, Surreal.Multiplication.P24_neg_left, neg_equiv_zero_iff, Surreal.Multiplication.P4_neg_left, lf_neg_iff, Surreal.Multiplication.P3_of_ih, le_neg_iff, leftMoves_mul_iff, moveRight_neg, grundyValue_neg, neg_fuzzy_iff, forall_rightMoves_neg, forall_leftMoves_neg, neg_lt_iff, neg_sub', Numeric.neg, Surreal.Multiplication.mulOptionsLTMul_of_numeric, neg_add_cancel_equiv, neg_equiv_neg_iff, impartial_def, zero_lt_neg_iff, neg_add_rev, Surreal.Multiplication.mulOption_lt_iff_P1, memα΅£_neg_iff, moveLeft_neg_toLeftMovesNeg, add_neg_cancel_equiv, Impartial.impartial_neg, zero_le_add_neg_cancel, zero_le_neg_add_cancel, neg_lf_zero_iff, inv_eq_of_lf_zero, neg_add_le, birthday_neg, moveRight_neg_toRightMovesNeg, exists_rightMoves_neg, leftMoves_neg, Surreal.Multiplication.mulOption_lt_of_lt, neg_up, quot_neg, zero_le_neg_iff, neg_lf_iff, memβ‚—_neg_iff, neg_le_iff, neg_mk_mul_moveLeft_inl, Surreal.Multiplication.P2_neg_right, Surreal.Multiplication.ih24_neg, Surreal.Multiplication.ih1_neg_right, mul_neg, rightMoves_neg, neg_mk_mul_moveRight_inr, neg_le_zero_iff, neg_insertLeft_neg, neg_identical_neg, Surreal.Multiplication.P3_neg, quot_neg_mul_neg, neg_nim, Impartial.neg_equiv_self, neg_mul, add_neg_cancel_le_zero, neg_add_cancel_le_zero, zero_lf_neg_iff, zero_equiv_neg_iff, zero_fuzzy_neg_iff, neg_birthday_le, neg_def, neg_down, Surreal.Multiplication.P4_neg_right, moveLeft_neg
instNegZeroClass πŸ“–CompOpβ€”
instSub πŸ“–CompOp
29 mathmath: sub_self_equiv, sub_congr_right, sub_congr, mk_mul_moveRight_inl, quot_right_distrib_sub, neg_mk_mul_moveRight_inl, Numeric.sub, sub_congr_left, mul_moveRight_inl, mul_moveRight_inr, Identical.sub, mul_moveLeft_inl, birthday_sub, neg_mk_mul_moveLeft_inr, quot_left_distrib_sub, lt_iff_sub_pos, lf_iff_sub_zero_lf, mul_moveLeft_inr, sub_zero, sub_zero_eq_add_zero, neg_sub', le_iff_sub_nonneg, mk_mul_moveLeft_inl, mk_mul_moveRight_inr, neg_mk_mul_moveLeft_inl, Surreal.mk_sub, mk_mul_moveLeft_inr, neg_mk_mul_moveRight_inr, quot_sub
neg πŸ“–CompOpβ€”
negAddRelabelling πŸ“–CompOpβ€”
toLeftMovesAdd πŸ“–CompOp
2 mathmath: add_moveLeft_inl, add_moveLeft_inr
toLeftMovesNeg πŸ“–CompOp
5 mathmath: exists_leftMoves_neg, mulOption_neg_neg, forall_leftMoves_neg, moveLeft_neg_toLeftMovesNeg, moveLeft_neg
toRightMovesAdd πŸ“–CompOp
2 mathmath: add_moveRight_inr, add_moveRight_inl
toRightMovesNeg πŸ“–CompOp
5 mathmath: mulOption_neg_neg, moveRight_neg, forall_rightMoves_neg, moveRight_neg_toRightMovesNeg, exists_rightMoves_neg
uniqueStarLeftMoves πŸ“–CompOpβ€”
uniqueStarRightMoves πŸ“–CompOpβ€”
up πŸ“–CompOp
8 mathmath: up_leftMoves, up_rightMoves, up_neg, up_moveLeft, star_fuzzy_up, up_moveRight, neg_up, neg_down
zeroAddRelabelling πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
addLeftMono πŸ“–mathematicalβ€”AddLeftMono
SetTheory.PGame
instAdd
le
β€”LE.le.trans
add_comm_le
add_le_add_left
addRightMono
addLeftStrictMono πŸ“–mathematicalβ€”AddLeftStrictMono
SetTheory.PGame
instAdd
Preorder.toLT
instPreorder
β€”add_le_add_right
addLeftMono
add_lf_add_left
addRightMono πŸ“–mathematicalβ€”AddRightMono
SetTheory.PGame
instAdd
le
β€”β€”
addRightStrictMono πŸ“–mathematicalβ€”AddRightStrictMono
SetTheory.PGame
instAdd
Preorder.toLT
instPreorder
β€”add_le_add_left
addRightMono
add_lf_add_right
add_assoc πŸ“–mathematicalβ€”Identical
SetTheory.PGame
instAdd
β€”β€”
add_assoc_equiv πŸ“–mathematicalβ€”SetTheory.PGame
setoid
instAdd
β€”Identical.equiv
add_assoc
add_comm πŸ“–mathematicalβ€”Identical
SetTheory.PGame
instAdd
β€”β€”
add_comm_equiv πŸ“–mathematicalβ€”SetTheory.PGame
setoid
instAdd
β€”Identical.equiv
add_comm
add_comm_le πŸ“–mathematicalβ€”SetTheory.PGame
le
instAdd
β€”Identical.le
add_comm
add_congr πŸ“–mathematicalSetTheory.PGame
setoid
instAddβ€”add_le_add
addLeftMono
addRightMono
add_congr_left πŸ“–mathematicalSetTheory.PGame
setoid
instAddβ€”add_congr
equiv_rfl
add_congr_right πŸ“–mathematicalSetTheory.PGame
setoid
instAddβ€”add_congr
equiv_rfl
add_eq_zero πŸ“–mathematicalβ€”Identical
SetTheory.PGame
instAdd
instZero
β€”leftMoves_add
rightMoves_add
add_lf_add_left πŸ“–mathematicalLFSetTheory.PGame
instAdd
β€”lf_congr
add_comm_equiv
add_lf_add_right
add_lf_add_of_le_of_lf πŸ“–mathematicalSetTheory.PGame
le
LF
instAddβ€”lf_of_le_of_lf
add_le_add_left
addRightMono
add_lf_add_left
add_lf_add_of_lf_of_le πŸ“–mathematicalLF
SetTheory.PGame
le
instAddβ€”lf_of_lf_of_le
add_lf_add_right
add_le_add_right
addLeftMono
add_lf_add_right πŸ“–mathematicalLFSetTheory.PGame
instAdd
β€”Identical.le
Identical.symm
add_zero
le_imp_le_of_le_of_le
add_le_add_right
addLeftMono
zero_le_add_neg_cancel
le_refl
add_assoc
add_le_add_left
addRightMono
add_neg_cancel_le_zero
not_le
add_moveLeft_inl πŸ“–mathematicalβ€”moveLeft
SetTheory.PGame
instAdd
DFunLike.coe
Equiv
LeftMoves
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesAdd
β€”β€”
add_moveLeft_inr πŸ“–mathematicalβ€”moveLeft
SetTheory.PGame
instAdd
DFunLike.coe
Equiv
LeftMoves
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesAdd
β€”β€”
add_moveRight_inl πŸ“–mathematicalβ€”moveRight
SetTheory.PGame
instAdd
DFunLike.coe
Equiv
RightMoves
EquivLike.toFunLike
Equiv.instEquivLike
toRightMovesAdd
β€”β€”
add_moveRight_inr πŸ“–mathematicalβ€”moveRight
SetTheory.PGame
instAdd
DFunLike.coe
Equiv
RightMoves
EquivLike.toFunLike
Equiv.instEquivLike
toRightMovesAdd
β€”β€”
add_neg_cancel_equiv πŸ“–mathematicalβ€”SetTheory.PGame
setoid
instAdd
instNeg
instZero
β€”add_neg_cancel_le_zero
zero_le_add_neg_cancel
add_neg_cancel_le_zero πŸ“–mathematicalβ€”SetTheory.PGame
le
instAdd
instNeg
instZero
β€”LE.le.trans
add_comm_le
neg_add_cancel_le_zero
add_zero πŸ“–mathematicalβ€”Identical
SetTheory.PGame
instAdd
instZero
β€”Identical.of_equiv
PEmpty.instIsEmpty
add_zero_equiv πŸ“–mathematicalβ€”SetTheory.PGame
setoid
instAdd
instZero
β€”Relabelling.equiv
down_leftMoves πŸ“–mathematicalβ€”LeftMoves
down
β€”β€”
down_moveLeft πŸ“–mathematicalβ€”moveLeft
down
star
β€”β€”
down_moveRight πŸ“–mathematicalβ€”moveRight
down
SetTheory.PGame
instZero
β€”β€”
down_neg πŸ“–mathematicalβ€”SetTheory.PGame
Preorder.toLT
instPreorder
down
instZero
β€”lt_iff_le_and_lf
lf_zero
PEmpty.instIsEmpty
down_rightMoves πŸ“–mathematicalβ€”RightMoves
down
β€”β€”
exists_leftMoves_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
RightMoves
LeftMoves
SetTheory.PGame
instNeg
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesNeg
β€”Equiv.exists_congr_right
exists_rightMoves_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
LeftMoves
RightMoves
SetTheory.PGame
instNeg
EquivLike.toFunLike
Equiv.instEquivLike
toRightMovesNeg
β€”Equiv.exists_congr_right
forall_leftMoves_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
RightMoves
LeftMoves
SetTheory.PGame
instNeg
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesNeg
β€”Equiv.forall_congr_right
forall_rightMoves_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
LeftMoves
RightMoves
SetTheory.PGame
instNeg
EquivLike.toFunLike
Equiv.instEquivLike
toRightMovesNeg
β€”Equiv.forall_congr_right
identical_zero πŸ“–mathematicalβ€”Identical
SetTheory.PGame
instZero
β€”identical_zero_iff
identical_zero_iff πŸ“–mathematicalβ€”Identical
SetTheory.PGame
instZero
IsEmpty
LeftMoves
RightMoves
β€”PEmpty.instIsEmpty
identical_of_isEmpty
isEmpty_zero_leftMoves
isEmpty_zero_rightMoves
instZeroLEOneClass πŸ“–mathematicalβ€”ZeroLEOneClass
SetTheory.PGame
instZero
instOnePGame
le
β€”LT.lt.le
zero_lt_one
isEmpty_leftMoves_add πŸ“–mathematicalβ€”IsEmpty
LeftMoves
SetTheory.PGame
instAdd
β€”isEmpty_sum
isEmpty_nat_rightMoves πŸ“–mathematicalβ€”IsEmpty
RightMoves
SetTheory.PGame
instNatCast
β€”PEmpty.instIsEmpty
nat_succ
rightMoves_add
instIsEmptySum
isEmpty_one_rightMoves
isEmpty_rightMoves_add πŸ“–mathematicalβ€”IsEmpty
RightMoves
SetTheory.PGame
instAdd
β€”isEmpty_sum
isOption_neg πŸ“–mathematicalβ€”IsOption
SetTheory.PGame
instNeg
β€”isOption_iff
neg_eq_iff_eq_neg
isOption_neg_neg πŸ“–mathematicalβ€”IsOption
SetTheory.PGame
instNeg
β€”isOption_neg
neg_neg
le_iff_sub_nonneg πŸ“–mathematicalβ€”SetTheory.PGame
le
instZero
instSub
β€”LE.le.trans
zero_le_add_neg_cancel
add_le_add_left
addRightMono
Identical.le
Identical.symm
zero_add
add_assoc
add_le_add_right
addLeftMono
neg_add_cancel_le_zero
add_zero
le_neg_iff πŸ“–mathematicalβ€”SetTheory.PGame
le
instNeg
β€”neg_neg
neg_le_neg_iff
leftMoves_add πŸ“–mathematicalβ€”LeftMoves
SetTheory.PGame
instAdd
β€”β€”
leftMoves_add_cases πŸ“–β€”DFunLike.coe
Equiv
LeftMoves
SetTheory.PGame
instAdd
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesAdd
β€”β€”Equiv.apply_symm_apply
leftMoves_neg πŸ“–mathematicalβ€”LeftMoves
SetTheory.PGame
instNeg
RightMoves
β€”β€”
leftMoves_neg_cases πŸ“–β€”DFunLike.coe
Equiv
RightMoves
LeftMoves
SetTheory.PGame
instNeg
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesNeg
β€”β€”Equiv.apply_symm_apply
lf_iff_sub_zero_lf πŸ“–mathematicalβ€”LF
SetTheory.PGame
instZero
instSub
β€”LE.le.trans_lf
zero_le_add_neg_cancel
add_lf_add_right
Identical.le
Identical.symm
zero_add
add_assoc
add_le_add_right
addLeftMono
neg_add_cancel_le_zero
add_zero
lf_neg_iff πŸ“–mathematicalβ€”LF
SetTheory.PGame
instNeg
β€”neg_neg
neg_lf_neg_iff
lt_iff_sub_pos πŸ“–mathematicalβ€”SetTheory.PGame
Preorder.toLT
instPreorder
instZero
instSub
β€”lt_of_le_of_lt
zero_le_add_neg_cancel
add_lt_add_left
addRightStrictMono
Identical.le
Identical.symm
zero_add
add_assoc
add_le_add_right
addLeftMono
neg_add_cancel_le_zero
add_zero
lt_neg_iff πŸ“–mathematicalβ€”SetTheory.PGame
Preorder.toLT
instPreorder
instNeg
β€”neg_neg
neg_lt_neg_iff
memα΅£_add_iff πŸ“–mathematicalβ€”memα΅£
SetTheory.PGame
instAdd
Identical
β€”moveRight_memα΅£
Identical.trans
Identical.add_right
Identical.add_left
memα΅£_neg_iff πŸ“–mathematicalβ€”memα΅£
SetTheory.PGame
instNeg
memβ‚—
Identical
β€”refl
instReflIdentical
Identical.trans
Identical.neg
memβ‚—_add_iff πŸ“–mathematicalβ€”memβ‚—
SetTheory.PGame
instAdd
Identical
β€”moveLeft_memβ‚—
Identical.trans
Identical.add_right
Identical.add_left
memβ‚—_neg_iff πŸ“–mathematicalβ€”memβ‚—
SetTheory.PGame
instNeg
memα΅£
Identical
β€”refl
instReflIdentical
Identical.trans
Identical.neg
mk_add_moveLeft πŸ“–mathematicalβ€”moveLeft
SetTheory.PGame
instAdd
β€”β€”
mk_add_moveLeft_inl πŸ“–mathematicalβ€”moveLeft
SetTheory.PGame
instAdd
β€”β€”
mk_add_moveLeft_inr πŸ“–mathematicalβ€”moveLeft
SetTheory.PGame
instAdd
β€”β€”
mk_add_moveRight πŸ“–mathematicalβ€”moveRight
SetTheory.PGame
instAdd
β€”β€”
mk_add_moveRight_inl πŸ“–mathematicalβ€”moveRight
SetTheory.PGame
instAdd
β€”β€”
mk_add_moveRight_inr πŸ“–mathematicalβ€”moveRight
SetTheory.PGame
instAdd
β€”β€”
moveLeft_neg πŸ“–mathematicalβ€”moveLeft
SetTheory.PGame
instNeg
moveRight
DFunLike.coe
Equiv
LeftMoves
RightMoves
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toLeftMovesNeg
β€”β€”
moveLeft_neg_toLeftMovesNeg πŸ“–mathematicalβ€”moveLeft
SetTheory.PGame
instNeg
DFunLike.coe
Equiv
RightMoves
LeftMoves
EquivLike.toFunLike
Equiv.instEquivLike
toLeftMovesNeg
moveRight
β€”moveLeft_neg
Equiv.symm_apply_apply
moveRight_neg πŸ“–mathematicalβ€”moveRight
SetTheory.PGame
instNeg
moveLeft
DFunLike.coe
Equiv
RightMoves
LeftMoves
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toRightMovesNeg
β€”β€”
moveRight_neg_toRightMovesNeg πŸ“–mathematicalβ€”moveRight
SetTheory.PGame
instNeg
DFunLike.coe
Equiv
LeftMoves
RightMoves
EquivLike.toFunLike
Equiv.instEquivLike
toRightMovesNeg
moveLeft
β€”moveRight_neg
Equiv.symm_apply_apply
nat_succ πŸ“–mathematicalβ€”SetTheory.PGame
instNatCast
instAdd
instOnePGame
β€”β€”
neg_add πŸ“–mathematicalβ€”SetTheory.PGame
instNeg
instAdd
β€”β€”
neg_add_cancel_equiv πŸ“–mathematicalβ€”SetTheory.PGame
setoid
instAdd
instNeg
instZero
β€”neg_add_cancel_le_zero
zero_le_neg_add_cancel
neg_add_cancel_le_zero πŸ“–mathematicalβ€”SetTheory.PGame
le
instAdd
instNeg
instZero
β€”le_zero
add_moveRight_inr
add_moveRight_inl
neg_add_le πŸ“–mathematicalβ€”SetTheory.PGame
le
instNeg
instAdd
β€”Eq.le
neg_add
neg_add_rev πŸ“–mathematicalβ€”Identical
SetTheory.PGame
instNeg
instAdd
β€”Identical.trans
of_eq
instReflIdentical
neg_add
add_comm
neg_def πŸ“–mathematicalβ€”SetTheory.PGame
instNeg
β€”β€”
neg_down πŸ“–mathematicalβ€”SetTheory.PGame
instNeg
down
up
β€”neg_zero
neg_star
neg_equiv_iff πŸ“–mathematicalβ€”SetTheory.PGame
setoid
instNeg
β€”neg_neg
neg_equiv_neg_iff
neg_equiv_neg_iff πŸ“–mathematicalβ€”SetTheory.PGame
setoid
instNeg
β€”Equiv.eq_1
neg_le_neg_iff
neg_equiv_zero_iff πŸ“–mathematicalβ€”SetTheory.PGame
setoid
instNeg
instZero
β€”neg_equiv_iff
neg_zero
neg_fuzzy_iff πŸ“–mathematicalβ€”Fuzzy
SetTheory.PGame
instNeg
β€”neg_neg
neg_fuzzy_neg_iff
neg_fuzzy_neg_iff πŸ“–mathematicalβ€”Fuzzy
SetTheory.PGame
instNeg
β€”Fuzzy.eq_1
neg_lf_neg_iff
neg_fuzzy_zero_iff πŸ“–mathematicalβ€”Fuzzy
SetTheory.PGame
instNeg
instZero
β€”neg_fuzzy_iff
neg_zero
neg_identical_neg πŸ“–mathematicalβ€”Identical
SetTheory.PGame
instNeg
β€”Identical.of_neg
Identical.neg
neg_insertLeft_neg πŸ“–mathematicalβ€”insertLeft
SetTheory.PGame
instNeg
insertRight
β€”neg_eq_iff_eq_neg
neg_insertRight_neg
neg_neg
neg_insertRight_neg πŸ“–mathematicalβ€”insertRight
SetTheory.PGame
instNeg
insertLeft
β€”β€”
neg_le_iff πŸ“–mathematicalβ€”SetTheory.PGame
le
instNeg
β€”neg_neg
neg_le_neg_iff
neg_le_neg_iff πŸ“–mathematicalβ€”SetTheory.PGame
le
instNeg
β€”β€”
neg_le_zero_iff πŸ“–mathematicalβ€”SetTheory.PGame
le
instNeg
instZero
β€”neg_le_iff
neg_zero
neg_lf_iff πŸ“–mathematicalβ€”LF
SetTheory.PGame
instNeg
β€”neg_neg
neg_lf_neg_iff
neg_lf_neg_iff πŸ“–mathematicalβ€”LF
SetTheory.PGame
instNeg
β€”β€”
neg_lf_zero_iff πŸ“–mathematicalβ€”LF
SetTheory.PGame
instNeg
instZero
β€”neg_lf_iff
neg_zero
neg_lt_iff πŸ“–mathematicalβ€”SetTheory.PGame
Preorder.toLT
instPreorder
instNeg
β€”neg_neg
neg_lt_neg_iff
neg_lt_neg_iff πŸ“–mathematicalβ€”SetTheory.PGame
Preorder.toLT
instPreorder
instNeg
β€”lt_iff_le_and_lf
neg_le_neg_iff
neg_lf_neg_iff
neg_lt_zero_iff πŸ“–mathematicalβ€”SetTheory.PGame
Preorder.toLT
instPreorder
instNeg
instZero
β€”neg_lt_iff
neg_zero
neg_ofLists πŸ“–mathematicalβ€”SetTheory.PGame
instNeg
ofLists
β€”Function.hfunext
neg_star πŸ“–mathematicalβ€”SetTheory.PGame
instNeg
star
β€”neg_zero
neg_sub' πŸ“–mathematicalβ€”SetTheory.PGame
instNeg
instSub
β€”neg_add
neg_up πŸ“–mathematicalβ€”SetTheory.PGame
instNeg
up
down
β€”neg_star
neg_zero
rightMoves_add πŸ“–mathematicalβ€”RightMoves
SetTheory.PGame
instAdd
β€”β€”
rightMoves_add_cases πŸ“–β€”DFunLike.coe
Equiv
RightMoves
SetTheory.PGame
instAdd
EquivLike.toFunLike
Equiv.instEquivLike
toRightMovesAdd
β€”β€”Equiv.apply_symm_apply
rightMoves_neg πŸ“–mathematicalβ€”RightMoves
SetTheory.PGame
instNeg
LeftMoves
β€”β€”
rightMoves_neg_cases πŸ“–β€”DFunLike.coe
Equiv
LeftMoves
RightMoves
SetTheory.PGame
instNeg
EquivLike.toFunLike
Equiv.instEquivLike
toRightMovesNeg
β€”β€”Equiv.apply_symm_apply
star_fuzzy_down πŸ“–mathematicalβ€”Fuzzy
star
down
β€”neg_fuzzy_neg_iff
neg_down
neg_star
star_fuzzy_up
star_fuzzy_up πŸ“–mathematicalβ€”Fuzzy
star
up
β€”PEmpty.instIsEmpty
star_fuzzy_zero πŸ“–mathematicalβ€”Fuzzy
star
SetTheory.PGame
instZero
β€”star_lf_zero
zero_lf_star
star_leftMoves πŸ“–mathematicalβ€”LeftMoves
star
β€”β€”
star_lf_zero πŸ“–mathematicalβ€”LF
star
SetTheory.PGame
instZero
β€”lf_zero
star_moveLeft πŸ“–mathematicalβ€”moveLeft
star
SetTheory.PGame
instZero
β€”β€”
star_moveRight πŸ“–mathematicalβ€”moveRight
star
SetTheory.PGame
instZero
β€”β€”
star_rightMoves πŸ“–mathematicalβ€”RightMoves
star
β€”β€”
sub_congr πŸ“–mathematicalSetTheory.PGame
setoid
instSubβ€”add_congr
neg_equiv_neg_iff
sub_congr_left πŸ“–mathematicalSetTheory.PGame
setoid
instSubβ€”sub_congr
equiv_rfl
sub_congr_right πŸ“–mathematicalSetTheory.PGame
setoid
instSubβ€”sub_congr
equiv_rfl
sub_self_equiv πŸ“–mathematicalβ€”SetTheory.PGame
setoid
instSub
instZero
β€”add_neg_cancel_equiv
sub_zero πŸ“–mathematicalβ€”Identical
SetTheory.PGame
instSub
instZero
β€”trans
instIsTransIdentical
of_eq
instReflIdentical
sub_zero_eq_add_zero
add_zero
sub_zero_eq_add_zero πŸ“–mathematicalβ€”SetTheory.PGame
instSub
instZero
instAdd
β€”neg_zero
up_leftMoves πŸ“–mathematicalβ€”LeftMoves
up
β€”β€”
up_moveLeft πŸ“–mathematicalβ€”moveLeft
up
SetTheory.PGame
instZero
β€”β€”
up_moveRight πŸ“–mathematicalβ€”moveRight
up
star
β€”β€”
up_neg πŸ“–mathematicalβ€”SetTheory.PGame
Preorder.toLT
instPreorder
instZero
up
β€”lt_iff_le_and_lf
zero_lf
PEmpty.instIsEmpty
up_rightMoves πŸ“–mathematicalβ€”RightMoves
up
β€”β€”
zero_add πŸ“–mathematicalβ€”Identical
SetTheory.PGame
instAdd
instZero
β€”Identical.trans
add_comm
add_zero
zero_add_equiv πŸ“–mathematicalβ€”SetTheory.PGame
setoid
instAdd
instZero
β€”Relabelling.equiv
zero_equiv_neg_iff πŸ“–mathematicalβ€”SetTheory.PGame
setoid
instZero
instNeg
β€”neg_equiv_iff
neg_zero
zero_fuzzy_neg_iff πŸ“–mathematicalβ€”Fuzzy
SetTheory.PGame
instZero
instNeg
β€”neg_fuzzy_iff
neg_zero
zero_le_add_neg_cancel πŸ“–mathematicalβ€”SetTheory.PGame
le
instZero
instAdd
instNeg
β€”LE.le.trans
zero_le_neg_add_cancel
add_comm_le
zero_le_neg_add_cancel πŸ“–mathematicalβ€”SetTheory.PGame
le
instZero
instAdd
instNeg
β€”neg_le_neg_iff
neg_zero
LE.le.trans
neg_add_le
neg_add_cancel_le_zero
zero_le_neg_iff πŸ“–mathematicalβ€”SetTheory.PGame
le
instZero
instNeg
β€”le_neg_iff
neg_zero
zero_lf_neg_iff πŸ“–mathematicalβ€”LF
SetTheory.PGame
instZero
instNeg
β€”lf_neg_iff
neg_zero
zero_lf_one πŸ“–mathematicalβ€”LF
SetTheory.PGame
instZero
instOnePGame
β€”LT.lt.lf
zero_lt_one
zero_lf_star πŸ“–mathematicalβ€”LF
SetTheory.PGame
instZero
star
β€”zero_lf
zero_lt_neg_iff πŸ“–mathematicalβ€”SetTheory.PGame
Preorder.toLT
instPreorder
instZero
instNeg
β€”lt_neg_iff
neg_zero
zero_lt_one πŸ“–mathematicalβ€”SetTheory.PGame
Preorder.toLT
instPreorder
instZero
instOnePGame
β€”lt_of_le_of_lf
zero_le_of_isEmpty_rightMoves
isEmpty_one_rightMoves
zero_lf_le
le_rfl

SetTheory.PGame.Identical

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalSetTheory.PGame.IdenticalSetTheory.PGame
SetTheory.PGame.instAdd
β€”trans
add_right
add_left
add_left πŸ“–mathematicalSetTheory.PGame.IdenticalSetTheory.PGame
SetTheory.PGame.instAdd
β€”trans
SetTheory.PGame.add_comm
add_right
add_right πŸ“–mathematicalSetTheory.PGame.IdenticalSetTheory.PGame
SetTheory.PGame.instAdd
β€”β€”
neg πŸ“–mathematicalSetTheory.PGame.IdenticalSetTheory.PGame
SetTheory.PGame.instNeg
β€”β€”
of_neg πŸ“–β€”SetTheory.PGame.Identical
SetTheory.PGame
SetTheory.PGame.instNeg
β€”β€”neg_neg
neg
sub πŸ“–mathematicalSetTheory.PGame.IdenticalSetTheory.PGame
SetTheory.PGame.instSub
β€”add
neg

SetTheory.PGame.Relabelling

Definitions

NameCategoryTheorems
addCongr πŸ“–CompOpβ€”
negCongr πŸ“–CompOpβ€”
subCongr πŸ“–CompOpβ€”

---

← Back to Index