Documentation Verification Report

Order

πŸ“ Source: Mathlib/SetTheory/PGame/Order.lean

Statistics

MetricCount
DefinitionsFuzzy, LF, instCoeRelabellingEquiv, instPreorder, instTransEquivLF, instTransEquivLe, instTransEquivLt, instTransLFEquiv, instTransLFLe, instTransLeEquiv, instTransLeLF, instTransLtEquiv, le, leftResponse, rightResponse, setoid, Β«term_β€–_Β», Β«term_⧏_Β»
18
Theoremslf_moveRight, moveLeft_lf, not_gf, trans_lf, lf, trans_lf, ge, isEmpty, le, not_fuzzy, not_fuzzy', of_equiv, of_exists, trans, lf, not_equiv, not_equiv', swap, swap_iff, equiv, ge, le, not_equiv, not_equiv', not_ge, not_gt, trans_le, trans_lt, equiv, ge, le, bddAbove_of_small, bddAbove_range_of_small, bddBelow_of_small, bddBelow_range_of_small, equiv_comm, equiv_congr_left, equiv_congr_right, equiv_def, equiv_of_eq, equiv_refl, equiv_rfl, fuzzy_congr, fuzzy_congr_imp, fuzzy_congr_left, fuzzy_congr_right, fuzzy_irrefl, fuzzy_of_equiv_of_fuzzy, fuzzy_of_fuzzy_of_equiv, insertLeft_equiv_of_lf, insertRight_equiv_of_lf, insertRight_le, instIrreflFuzzy, instIrreflLF, instIsEquivEquiv, instSymmFuzzy, le_congr, le_congr_imp, le_congr_left, le_congr_right, le_def, le_iff_forall_lf, le_insertLeft, le_of_equiv_of_le, le_of_forall_lf, le_of_forall_lt, le_of_le_of_equiv, le_or_gf, le_zero, le_zero_lf, le_zero_of_isEmpty_leftMoves, leftResponse_spec, lf_congr, lf_congr_imp, lf_congr_left, lf_congr_right, lf_def, lf_iff_exists_le, lf_iff_lt_or_fuzzy, lf_irrefl, lf_mk, lf_mk_of_le, lf_moveRight, lf_moveRight_of_le, lf_of_equiv_of_lf, lf_of_fuzzy, lf_of_le_mk, lf_of_le_moveLeft, lf_of_le_of_lf, lf_of_lf_of_equiv, lf_of_lf_of_le, lf_of_lf_of_lt, lf_of_lt, lf_of_lt_of_lf, lf_of_mk_le, lf_of_moveRight_le, lf_or_equiv_or_gf, lf_zero, lf_zero_le, lt_congr, lt_congr_imp, lt_congr_left, lt_congr_right, lt_iff_le_and_lf, lt_of_equiv_of_lt, lt_of_le_of_lf, lt_of_lt_of_equiv, lt_or_equiv_of_le, lt_or_equiv_or_gf, lt_or_equiv_or_gt_or_fuzzy, lt_or_fuzzy_of_lf, mk_le_mk, mk_lf, mk_lf_mk, mk_lf_of_le, moveLeft_lf, moveLeft_lf_of_le, not_fuzzy_of_ge, not_fuzzy_of_le, not_le, not_lf, not_lt, rightResponse_spec, zero_le, zero_le_lf, zero_le_of_isEmpty_rightMoves, zero_lf, zero_lf_le
128
Total146

LE.le

Theorems

NameKindAssumesProvesValidatesDepends On
lf_moveRight πŸ“–mathematicalSetTheory.PGame
SetTheory.PGame.le
SetTheory.PGame.LF
SetTheory.PGame.moveRight
β€”SetTheory.PGame.lf_moveRight_of_le
moveLeft_lf πŸ“–mathematicalSetTheory.PGame
SetTheory.PGame.le
SetTheory.PGame.LF
SetTheory.PGame.moveLeft
β€”SetTheory.PGame.moveLeft_lf_of_le
not_gf πŸ“–mathematicalSetTheory.PGame
SetTheory.PGame.le
SetTheory.PGame.LFβ€”SetTheory.PGame.not_lf
trans_lf πŸ“–β€”SetTheory.PGame
SetTheory.PGame.le
SetTheory.PGame.LF
β€”β€”SetTheory.PGame.lf_of_le_of_lf

LT.lt

Theorems

NameKindAssumesProvesValidatesDepends On
lf πŸ“–mathematicalSetTheory.PGame
Preorder.toLT
SetTheory.PGame.instPreorder
SetTheory.PGame.LFβ€”SetTheory.PGame.lf_of_lt
trans_lf πŸ“–β€”SetTheory.PGame
Preorder.toLT
SetTheory.PGame.instPreorder
SetTheory.PGame.LF
β€”β€”SetTheory.PGame.lf_of_lt_of_lf

SetTheory.PGame

Definitions

NameCategoryTheorems
Fuzzy πŸ“–MathDef
34 mathmath: Impartial.fuzzy_zero_iff_gf, lt_or_fuzzy_of_lf, fuzzy_iff_game_fuzzy, not_fuzzy_of_ge, star_fuzzy_zero, Fuzzy.swap_iff, lt_or_equiv_or_gt_or_fuzzy, fuzzy_congr, neg_fuzzy_zero_iff, nim_fuzzy_zero_of_ne_zero, Impartial.exists_left_move_equiv_iff_fuzzy_zero, neg_fuzzy_neg_iff, Impartial.not_fuzzy_zero_iff, neg_fuzzy_iff, nim_add_fuzzy_zero_iff, star_fuzzy_down, Impartial.not_equiv_zero_iff, Equiv.not_fuzzy', Impartial.fuzzy_zero_iff_lf, Impartial.equiv_or_fuzzy_zero, fuzzy_congr_left, Equiv.not_fuzzy, instIrreflFuzzy, star_fuzzy_up, fuzzy_congr_right, not_fuzzy_of_le, Impartial.forall_rightMoves_fuzzy_iff_equiv_zero, instSymmFuzzy, not_fuzzy, Impartial.forall_leftMoves_fuzzy_iff_equiv_zero, Impartial.exists_right_move_equiv_iff_fuzzy_zero, fuzzy_irrefl, zero_fuzzy_neg_iff, lf_iff_lt_or_fuzzy
LF πŸ“–MathDef
60 mathmath: Ordinal.toPGame_lf_iff, not_lf, star_lf_zero, Impartial.fuzzy_zero_iff_gf, LT.lt.lf, neg_lf_neg_iff, lt_iff_le_and_lf, lf_congr, lf_irrefl, lf_iff_exists_le, lt_or_equiv_or_gf, lf_zero_le, mk_lf_mk, LE.le.not_gf, lf_iff_sub_zero_lf, lf_or_equiv_or_gf, lf_of_mk_le, lf_mk_of_le, Ordinal.toPGame_lf, lf_of_moveRight_le, mk_lf, zero_lf_one, lf_of_le_moveLeft, not_le, mk_le_mk, lf_zero, lf_of_lt, lf_neg_iff, Impartial.lf_zero_iff, lf_def, zero_lf_star, zero_lf_le, le_zero_lf, Impartial.fuzzy_zero_iff_lf, lf_of_fuzzy, zero_lf_inv', lf_congr_right, not_lt, lf_of_le_mk, LE.le.lf_moveRight, neg_lf_zero_iff, lf_congr_left, le_or_gf, moveLeft_lf, lf_moveRight, LE.le.moveLeft_lf, neg_lf_iff, zero_lf, Fuzzy.lf, mk_lf_of_le, instIrreflLF, zero_le_lf, lf_moveRight_of_le, moveLeft_lf_of_le, lf_iff_lt, lf_mk, zero_lf_neg_iff, lf_iff_game_lf, le_iff_forall_lf, lf_iff_lt_or_fuzzy
instCoeRelabellingEquiv πŸ“–CompOpβ€”
instPreorder πŸ“–CompOp
45 mathmath: lt_or_equiv_or_gt, powHalf_succ_lt_one, lt_congr, lt_iff_le_and_lf, lt_congr_right, lt_or_fuzzy_of_lf, lt_iff_exists_le, powHalf_succ_lt_powHalf, neg_lt_zero_iff, neg_lt_neg_iff, lt_or_equiv_or_gf, lt_iff_game_lt, Impartial.nonneg, le_iff_forall_lt, addRightStrictMono, lt_neg_iff, lt_iff_sub_pos, lt_or_equiv_or_gt_or_fuzzy, Numeric.left_lt_right, Surreal.zero_lt_mk, zero_lt_one, LF.lt, neg_lt_iff, Impartial.nonpos, up_neg, lt_def, zero_lt_neg_iff, lt_congr_left, not_lt, powHalf_pos, Ordinal.toPGame_lt_iff, lt_of_exists_le, Numeric.lt_moveRight, down_neg, LF.not_gt, numeric_def, lt_or_equiv_of_le, lt_of_le_of_lf, Numeric.moveLeft_lt, lt_of_lf, addLeftStrictMono, Surreal.mk_lt_mk, lf_iff_lt, Ordinal.toPGame_lt, lf_iff_lt_or_fuzzy
instTransEquivLF πŸ“–CompOpβ€”
instTransEquivLe πŸ“–CompOpβ€”
instTransEquivLt πŸ“–CompOpβ€”
instTransLFEquiv πŸ“–CompOpβ€”
instTransLFLe πŸ“–CompOpβ€”
instTransLeEquiv πŸ“–CompOpβ€”
instTransLeLF πŸ“–CompOpβ€”
instTransLtEquiv πŸ“–CompOpβ€”
le πŸ“–CompOp
74 mathmath: not_lf, zero_le_of_isEmpty_rightMoves, le_congr_right, Impartial.le_zero_iff, neg_le_neg_iff, lt_iff_le_and_lf, addLeftMono, lt_iff_exists_le, Impartial.equiv_zero_iff_le, le_birthday, lf_iff_exists_le, le_of_forall_lf, lf_zero_le, powHalf_le_one, addRightMono, le_iff_forall_lt, le_def, mk_lf_mk, equiv_def, LF.not_ge, Relabelling.le, add_comm_le, Impartial.equiv_zero_iff_ge, not_le, Identical.ge, Identical.le, le_zero, mk_le_mk, le_of_forall_lt, zero_le, le_neg_iff, le_zero_of_isEmpty_leftMoves, bddAbove_of_small, Ordinal.toPGame_nonneg, bddBelow_of_small, Surreal.Multiplication.mul_right_le_of_equiv, powHalf_succ_le_powHalf, zero_lf_le, le_zero_lf, le_congr_left, Ordinal.toPGame_le, instZeroLEOneClass, not_lt, zero_le_add_neg_cancel, zero_le_neg_add_cancel, le_iff_game_le, zero_le_powHalf, bddBelow_range_of_small, neg_add_le, le_or_gf, le_congr, LF.le, le_iff_sub_nonneg, Surreal.zero_le_mk, zero_le_neg_iff, Equiv.ge, bddAbove_range_of_small, neg_le_iff, Numeric.moveLeft_le, insertRight_le, Relabelling.ge, neg_le_zero_iff, Ordinal.toPGame_le_iff, zero_le_lf, add_neg_cancel_le_zero, neg_add_cancel_le_zero, Ordinal.toPGameEmbedding_apply, le_insertLeft, Numeric.le_moveRight, neg_birthday_le, Surreal.mk_le_mk, le_iff_forall_lf, Equiv.le, le_of_lf
leftResponse πŸ“–CompOp
1 mathmath: leftResponse_spec
rightResponse πŸ“–CompOp
1 mathmath: rightResponse_spec
setoid πŸ“–CompOp
115 mathmath: nim_add_equiv_zero_iff, lt_or_equiv_or_gt, quot_neg_mul, sub_self_equiv, Impartial.mk'_add_self, right_distrib_equiv, quot_one, grundyValue_eq_iff_equiv_nim, one_mul_equiv, Impartial.equiv_zero_iff_le, Surreal.Multiplication.mulOption_lt_mul_iff_P3, equiv_iff_game_eq, quot_right_distrib_sub, fuzzy_iff_game_fuzzy, Impartial.add_self, grundyValue_eq_iff_equiv, Ordinal.toPGame_zero, quot_natCast, quot_mul_neg, lt_or_equiv_or_gf, Ordinal.toPGame_nmul, lt_iff_game_lt, inv_one_equiv, rightMoves_mul_iff, SetTheory.Game.zero_def, quot_mul_one, nim_one_equiv, Surreal.mk_eq_mk, quot_left_distrib_sub, equiv_comm, equiv_refl, SetTheory.Game.birthday_eq_pGameBirthday, mul_one_equiv, equiv_def, LF.not_equiv', Fuzzy.not_equiv, Ordinal.toPGame_one, lf_or_equiv_or_gf, neg_equiv_iff, Fuzzy.not_equiv', Equiv.isEmpty, lt_or_equiv_or_gt_or_fuzzy, mul_zero_equiv, Impartial.exists_left_move_equiv_iff_fuzzy_zero, quot_left_distrib, Impartial.equiv_zero_iff_ge, zero_add_equiv, left_distrib_equiv, Surreal.Multiplication.mulOption_lt, equiv_congr_right, mulOption_symm, mul_assoc_equiv, quot_one_mul, equiv_congr_left, neg_equiv_zero_iff, inv'_one_equiv, add_comm_equiv, Impartial.mk'_neg_equiv_self, Impartial.equiv_iff_add_equiv_zero, Impartial.not_fuzzy_zero_iff, equiv_nim_grundyValue, leftMoves_mul_iff, insertLeft_equiv_of_lf, Ordinal.mk_toPGame, add_assoc_equiv, Impartial.not_equiv_zero_iff, neg_add_cancel_equiv, neg_equiv_neg_iff, Impartial.equiv_or_fuzzy_zero, mul_comm_equiv, add_zero_equiv, impartial_def, nim_zero_equiv, Ordinal.toPGame_natCast, quot_mul_comm, Surreal.Multiplication.mulOption_lt_iff_P1, equiv_rfl, add_neg_cancel_equiv, Ordinal.toGame_nmul, quot_mul_zero, LF.not_equiv, zero_mul_equiv, le_iff_game_le, add_powHalf_succ_self_eq_powHalf, Identical.equiv, nim_equiv_iff_eq, Impartial.forall_rightMoves_fuzzy_iff_equiv_zero, equiv_of_eq, Surreal.Multiplication.mulOption_lt_of_lt, SetTheory.Game.birthday_star, quot_mul_assoc, Relabelling.equiv, quot_neg, quot_right_distrib, Surreal.mk_eq_zero, insertRight_equiv_of_lf, quot_zero_mul, Ordinal.toPGame_nadd, Impartial.equiv_iff_add_equiv_zero', Impartial.forall_leftMoves_fuzzy_iff_equiv_zero, half_add_half_equiv_one, SetTheory.Game.birthday_quot_le_pGameBirthday, Impartial.exists_right_move_equiv_iff_fuzzy_zero, lt_or_equiv_of_le, inv'_zero_equiv, grundyValue_iff_equiv_zero, quot_neg_mul_neg, Impartial.neg_equiv_self, quot_zero, quot_add, quot_sub, nim_add_nim_equiv, zero_equiv_neg_iff, lf_iff_game_lf, Ordinal.toPGame_equiv_iff
Β«term_β€–_Β» πŸ“–CompOpβ€”
Β«term_⧏_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bddAbove_of_small πŸ“–mathematicalβ€”BddAbove
SetTheory.PGame
le
β€”Subtype.range_coe_subtype
bddAbove_range_of_small
bddAbove_range_of_small πŸ“–mathematicalβ€”BddAbove
SetTheory.PGame
le
Set.range
β€”Set.forall_mem_range
Equiv.symm_apply_apply
le_iff_forall_lf
PEmpty.instIsEmpty
moveLeft_lf
bddBelow_of_small πŸ“–mathematicalβ€”BddBelow
SetTheory.PGame
le
β€”Subtype.range_coe_subtype
bddBelow_range_of_small
bddBelow_range_of_small πŸ“–mathematicalβ€”BddBelow
SetTheory.PGame
le
Set.range
β€”Set.forall_mem_range
Equiv.symm_apply_apply
le_iff_forall_lf
PEmpty.instIsEmpty
lf_moveRight
equiv_comm πŸ“–mathematicalβ€”SetTheory.PGame
setoid
β€”comm
IsEquiv.toSymm
Quotient.instIsEquivEquiv
equiv_congr_left πŸ“–mathematicalβ€”SetTheory.PGame
setoid
β€”Equiv.trans
Equiv.symm
equiv_rfl
equiv_congr_right πŸ“–mathematicalβ€”SetTheory.PGame
setoid
β€”Equiv.trans
Equiv.symm
equiv_rfl
equiv_def πŸ“–mathematicalβ€”SetTheory.PGame
setoid
le
β€”β€”
equiv_of_eq πŸ“–mathematicalβ€”SetTheory.PGame
setoid
β€”β€”
equiv_refl πŸ“–mathematicalβ€”SetTheory.PGame
setoid
β€”refl
IsPreorder.toRefl
IsEquiv.toIsPreorder
Quotient.instIsEquivEquiv
equiv_rfl πŸ“–mathematicalβ€”SetTheory.PGame
setoid
β€”refl
IsPreorder.toRefl
IsEquiv.toIsPreorder
Quotient.instIsEquivEquiv
fuzzy_congr πŸ“–mathematicalSetTheory.PGame
setoid
Fuzzyβ€”lf_congr
fuzzy_congr_imp πŸ“–β€”SetTheory.PGame
setoid
Fuzzy
β€”β€”fuzzy_congr
fuzzy_congr_left πŸ“–mathematicalSetTheory.PGame
setoid
Fuzzyβ€”fuzzy_congr
equiv_rfl
fuzzy_congr_right πŸ“–mathematicalSetTheory.PGame
setoid
Fuzzyβ€”fuzzy_congr
equiv_rfl
fuzzy_irrefl πŸ“–mathematicalβ€”Fuzzyβ€”lf_irrefl
fuzzy_of_equiv_of_fuzzy πŸ“–β€”SetTheory.PGame
setoid
Fuzzy
β€”β€”fuzzy_congr_left
fuzzy_of_fuzzy_of_equiv πŸ“–β€”Fuzzy
SetTheory.PGame
setoid
β€”β€”fuzzy_congr_right
insertLeft_equiv_of_lf πŸ“–mathematicalLFSetTheory.PGame
setoid
insertLeft
β€”equiv_def
le_def
le_refl
le_insertLeft
insertRight_equiv_of_lf πŸ“–mathematicalLFSetTheory.PGame
setoid
insertRight
β€”equiv_def
insertRight_le
le_def
le_refl
insertRight_le πŸ“–mathematicalβ€”SetTheory.PGame
le
insertRight
β€”le_def
le_refl
instIrreflFuzzy πŸ“–mathematicalβ€”SetTheory.PGame
Fuzzy
β€”fuzzy_irrefl
instIrreflLF πŸ“–mathematicalβ€”SetTheory.PGame
LF
β€”lf_irrefl
instIsEquivEquiv πŸ“–mathematicalβ€”IsEquiv
SetTheory.PGame
Equiv
β€”le_rfl
LE.le.trans
instSymmFuzzy πŸ“–mathematicalβ€”SetTheory.PGame
Fuzzy
β€”Fuzzy.swap
le_congr πŸ“–mathematicalSetTheory.PGame
setoid
leβ€”le_congr_imp
Equiv.symm
le_congr_imp πŸ“–β€”SetTheory.PGame
setoid
le
β€”β€”LE.le.trans
le_congr_left πŸ“–mathematicalSetTheory.PGame
setoid
leβ€”le_congr
equiv_rfl
le_congr_right πŸ“–mathematicalSetTheory.PGame
setoid
leβ€”le_congr
equiv_rfl
le_def πŸ“–mathematicalβ€”SetTheory.PGame
le
moveLeft
moveRight
β€”le_iff_forall_lf
le_iff_forall_lf πŸ“–mathematicalβ€”SetTheory.PGame
le
LF
moveLeft
moveRight
β€”wf_isOption
Sym2.GameAdd.fix_eq
le_insertLeft πŸ“–mathematicalβ€”SetTheory.PGame
le
insertLeft
β€”le_def
le_refl
le_of_equiv_of_le πŸ“–β€”SetTheory.PGame
setoid
le
β€”β€”LE.le.trans
le_of_forall_lf πŸ“–mathematicalLF
moveLeft
moveRight
SetTheory.PGame
le
β€”le_iff_forall_lf
le_of_forall_lt πŸ“–mathematicalSetTheory.PGame
Preorder.toLT
instPreorder
moveLeft
moveRight
leβ€”le_of_forall_lf
LT.lt.lf
le_of_le_of_equiv πŸ“–β€”SetTheory.PGame
le
setoid
β€”β€”LE.le.trans
le_or_gf πŸ“–mathematicalβ€”SetTheory.PGame
le
LF
β€”not_le
em
le_zero πŸ“–mathematicalβ€”SetTheory.PGame
le
instZero
moveRight
moveLeft
β€”le_def
PEmpty.instIsEmpty
le_zero_lf πŸ“–mathematicalβ€”SetTheory.PGame
le
instZero
LF
moveLeft
β€”le_iff_forall_lf
PEmpty.instIsEmpty
le_zero_of_isEmpty_leftMoves πŸ“–mathematicalβ€”SetTheory.PGame
le
instZero
β€”le_zero
leftResponse_spec πŸ“–mathematicalSetTheory.PGame
le
instZero
moveLeft
moveRight
leftResponse
β€”zero_le
lf_congr πŸ“–mathematicalSetTheory.PGame
setoid
LFβ€”not_le
le_congr
lf_congr_imp πŸ“–β€”SetTheory.PGame
setoid
LF
β€”β€”lf_congr
lf_congr_left πŸ“–mathematicalSetTheory.PGame
setoid
LFβ€”lf_congr
equiv_rfl
lf_congr_right πŸ“–mathematicalSetTheory.PGame
setoid
LFβ€”lf_congr
equiv_rfl
lf_def πŸ“–mathematicalβ€”LF
moveLeft
moveRight
β€”lf_iff_exists_le
lf_iff_exists_le πŸ“–mathematicalβ€”LF
SetTheory.PGame
le
moveLeft
moveRight
β€”LF.eq_1
le_iff_forall_lf
not_and_or
lf_iff_lt_or_fuzzy πŸ“–mathematicalβ€”LF
SetTheory.PGame
Preorder.toLT
instPreorder
Fuzzy
β€”β€”
lf_irrefl πŸ“–mathematicalβ€”LFβ€”LE.le.not_gf
le_rfl
lf_mk πŸ“–mathematicalβ€”LFβ€”moveLeft_lf
lf_mk_of_le πŸ“–mathematicalSetTheory.PGame
le
LFβ€”lf_of_le_moveLeft
lf_moveRight πŸ“–mathematicalβ€”LF
moveRight
β€”LE.le.lf_moveRight
le_rfl
lf_moveRight_of_le πŸ“–mathematicalSetTheory.PGame
le
LF
moveRight
β€”le_iff_forall_lf
lf_of_equiv_of_lf πŸ“–β€”SetTheory.PGame
setoid
LF
β€”β€”lf_congr_imp
Equiv.symm
equiv_rfl
lf_of_fuzzy πŸ“–mathematicalFuzzyLFβ€”lf_iff_lt_or_fuzzy
lf_of_le_mk πŸ“–mathematicalSetTheory.PGame
le
LFβ€”moveLeft_lf_of_le
lf_of_le_moveLeft πŸ“–mathematicalSetTheory.PGame
le
moveLeft
LFβ€”lf_iff_exists_le
lf_of_le_of_lf πŸ“–β€”SetTheory.PGame
le
LF
β€”β€”not_le
LE.le.trans
lf_of_lf_of_equiv πŸ“–β€”LF
SetTheory.PGame
setoid
β€”β€”lf_congr_imp
equiv_rfl
lf_of_lf_of_le πŸ“–β€”LF
SetTheory.PGame
le
β€”β€”not_le
LE.le.trans
lf_of_lf_of_lt πŸ“–β€”LF
SetTheory.PGame
Preorder.toLT
instPreorder
β€”β€”LF.trans_le
LT.lt.le
lf_of_lt πŸ“–mathematicalSetTheory.PGame
Preorder.toLT
instPreorder
LFβ€”β€”
lf_of_lt_of_lf πŸ“–β€”SetTheory.PGame
Preorder.toLT
instPreorder
LF
β€”β€”LE.le.trans_lf
LT.lt.le
lf_of_mk_le πŸ“–mathematicalSetTheory.PGame
le
LFβ€”lf_moveRight_of_le
lf_of_moveRight_le πŸ“–mathematicalSetTheory.PGame
le
moveRight
LFβ€”lf_iff_exists_le
lf_or_equiv_or_gf πŸ“–mathematicalβ€”LF
SetTheory.PGame
setoid
β€”lt_or_equiv_of_le
not_lf
LT.lt.lf
Equiv.symm
lf_zero πŸ“–mathematicalβ€”LF
SetTheory.PGame
instZero
moveLeft
moveRight
β€”lf_def
PEmpty.instIsEmpty
lf_zero_le πŸ“–mathematicalβ€”LF
SetTheory.PGame
instZero
le
moveRight
β€”lf_iff_exists_le
PEmpty.instIsEmpty
lt_congr πŸ“–mathematicalSetTheory.PGame
setoid
Preorder.toLT
instPreorder
β€”lt_congr_imp
Equiv.symm
lt_congr_imp πŸ“–β€”SetTheory.PGame
setoid
Preorder.toLT
instPreorder
β€”β€”LE.le.trans_lt
LT.lt.trans_le
lt_congr_left πŸ“–mathematicalSetTheory.PGame
setoid
Preorder.toLT
instPreorder
β€”lt_congr
equiv_rfl
lt_congr_right πŸ“–mathematicalSetTheory.PGame
setoid
Preorder.toLT
instPreorder
β€”lt_congr
equiv_rfl
lt_iff_le_and_lf πŸ“–mathematicalβ€”SetTheory.PGame
Preorder.toLT
instPreorder
le
LF
β€”β€”
lt_of_equiv_of_lt πŸ“–β€”SetTheory.PGame
setoid
Preorder.toLT
instPreorder
β€”β€”LE.le.trans_lt
lt_of_le_of_lf πŸ“–mathematicalSetTheory.PGame
le
LF
Preorder.toLT
instPreorder
β€”β€”
lt_of_lt_of_equiv πŸ“–β€”SetTheory.PGame
Preorder.toLT
instPreorder
setoid
β€”β€”LT.lt.trans_le
lt_or_equiv_of_le πŸ“–mathematicalSetTheory.PGame
le
Preorder.toLT
instPreorder
setoid
β€”not_le
em
lt_or_equiv_or_gf πŸ“–mathematicalβ€”SetTheory.PGame
Preorder.toLT
instPreorder
setoid
LF
β€”lf_iff_lt_or_fuzzy
Fuzzy.swap_iff
lt_or_equiv_or_gt_or_fuzzy
lt_or_equiv_or_gt_or_fuzzy πŸ“–mathematicalβ€”SetTheory.PGame
Preorder.toLT
instPreorder
setoid
Fuzzy
β€”le_or_gf
lt_or_fuzzy_of_lf πŸ“–mathematicalLFSetTheory.PGame
Preorder.toLT
instPreorder
Fuzzy
β€”lf_iff_lt_or_fuzzy
mk_le_mk πŸ“–mathematicalβ€”SetTheory.PGame
le
LF
β€”le_iff_forall_lf
mk_lf πŸ“–mathematicalβ€”LFβ€”lf_moveRight
mk_lf_mk πŸ“–mathematicalβ€”LF
SetTheory.PGame
le
β€”lf_iff_exists_le
mk_lf_of_le πŸ“–mathematicalSetTheory.PGame
le
LFβ€”lf_of_moveRight_le
moveLeft_lf πŸ“–mathematicalβ€”LF
moveLeft
β€”LE.le.moveLeft_lf
le_rfl
moveLeft_lf_of_le πŸ“–mathematicalSetTheory.PGame
le
LF
moveLeft
β€”le_iff_forall_lf
not_fuzzy_of_ge πŸ“–mathematicalSetTheory.PGame
le
Fuzzyβ€”LF.not_ge
not_fuzzy_of_le πŸ“–mathematicalSetTheory.PGame
le
Fuzzyβ€”LF.not_ge
not_le πŸ“–mathematicalβ€”SetTheory.PGame
le
LF
β€”β€”
not_lf πŸ“–mathematicalβ€”LF
SetTheory.PGame
le
β€”β€”
not_lt πŸ“–mathematicalβ€”SetTheory.PGame
Preorder.toLT
instPreorder
LF
le
β€”not_lt_iff_not_le_or_ge
rightResponse_spec πŸ“–mathematicalSetTheory.PGame
le
instZero
moveRight
moveLeft
rightResponse
β€”le_zero
zero_le πŸ“–mathematicalβ€”SetTheory.PGame
le
instZero
moveLeft
moveRight
β€”le_def
PEmpty.instIsEmpty
zero_le_lf πŸ“–mathematicalβ€”SetTheory.PGame
le
instZero
LF
moveRight
β€”le_iff_forall_lf
PEmpty.instIsEmpty
zero_le_of_isEmpty_rightMoves πŸ“–mathematicalβ€”SetTheory.PGame
le
instZero
β€”zero_le
zero_lf πŸ“–mathematicalβ€”LF
SetTheory.PGame
instZero
moveRight
moveLeft
β€”lf_def
PEmpty.instIsEmpty
zero_lf_le πŸ“–mathematicalβ€”LF
SetTheory.PGame
instZero
le
moveLeft
β€”lf_iff_exists_le
PEmpty.instIsEmpty

SetTheory.PGame.Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
ge πŸ“–mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.leβ€”β€”
isEmpty πŸ“–mathematicalβ€”SetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.instZero
β€”SetTheory.PGame.Relabelling.equiv
le πŸ“–mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.leβ€”β€”
not_fuzzy πŸ“–mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.Fuzzyβ€”SetTheory.PGame.not_fuzzy_of_le
not_fuzzy' πŸ“–mathematicalSetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.Fuzzyβ€”SetTheory.PGame.not_fuzzy_of_le
of_equiv πŸ“–β€”SetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.moveLeft
DFunLike.coe
Equiv
SetTheory.PGame.LeftMoves
EquivLike.toFunLike
Equiv.instEquivLike
SetTheory.PGame.moveRight
SetTheory.PGame.RightMoves
β€”β€”of_exists
Equiv.apply_symm_apply
of_exists πŸ“–β€”SetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.moveLeft
SetTheory.PGame.moveRight
β€”β€”SetTheory.PGame.le_def
le
ge
trans πŸ“–β€”SetTheory.PGame
SetTheory.PGame.setoid
β€”β€”trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
Quotient.instIsEquivEquiv

SetTheory.PGame.Fuzzy

Theorems

NameKindAssumesProvesValidatesDepends On
lf πŸ“–mathematicalSetTheory.PGame.FuzzySetTheory.PGame.LFβ€”SetTheory.PGame.lf_of_fuzzy
not_equiv πŸ“–mathematicalSetTheory.PGame.FuzzySetTheory.PGame
SetTheory.PGame.setoid
β€”LE.le.not_gf
not_equiv' πŸ“–mathematicalSetTheory.PGame.FuzzySetTheory.PGame
SetTheory.PGame.setoid
β€”LE.le.not_gf
swap πŸ“–β€”SetTheory.PGame.Fuzzyβ€”β€”β€”
swap_iff πŸ“–mathematicalβ€”SetTheory.PGame.Fuzzyβ€”swap

SetTheory.PGame.Identical

Theorems

NameKindAssumesProvesValidatesDepends On
equiv πŸ“–mathematicalSetTheory.PGame.IdenticalSetTheory.PGame
SetTheory.PGame.setoid
β€”le
ge
ge πŸ“–mathematicalSetTheory.PGame.IdenticalSetTheory.PGame
SetTheory.PGame.le
β€”le
symm
le πŸ“–mathematicalSetTheory.PGame.IdenticalSetTheory.PGame
SetTheory.PGame.le
β€”SetTheory.PGame.le_of_forall_lf
SetTheory.PGame.lf_of_le_moveLeft
SetTheory.PGame.lf_of_moveRight_le

SetTheory.PGame.LF

Theorems

NameKindAssumesProvesValidatesDepends On
not_equiv πŸ“–mathematicalSetTheory.PGame.LFSetTheory.PGame
SetTheory.PGame.setoid
β€”not_ge
not_equiv' πŸ“–mathematicalSetTheory.PGame.LFSetTheory.PGame
SetTheory.PGame.setoid
β€”not_ge
not_ge πŸ“–mathematicalSetTheory.PGame.LFSetTheory.PGame
SetTheory.PGame.le
β€”β€”
not_gt πŸ“–mathematicalSetTheory.PGame.LFSetTheory.PGame
Preorder.toLT
SetTheory.PGame.instPreorder
β€”not_ge
LT.lt.le
trans_le πŸ“–β€”SetTheory.PGame.LF
SetTheory.PGame
SetTheory.PGame.le
β€”β€”SetTheory.PGame.lf_of_lf_of_le
trans_lt πŸ“–β€”SetTheory.PGame.LF
SetTheory.PGame
Preorder.toLT
SetTheory.PGame.instPreorder
β€”β€”SetTheory.PGame.lf_of_lf_of_lt

SetTheory.PGame.Relabelling

Theorems

NameKindAssumesProvesValidatesDepends On
equiv πŸ“–mathematicalβ€”SetTheory.PGame
SetTheory.PGame.setoid
β€”le
ge
ge πŸ“–mathematicalβ€”SetTheory.PGame
SetTheory.PGame.le
β€”le
le πŸ“–mathematicalβ€”SetTheory.PGame
SetTheory.PGame.le
β€”β€”

---

← Back to Index