Documentation Verification Report

Basic

πŸ“ Source: Mathlib/SetTheory/Surreal/Basic.lean

Statistics

MetricCount
DefinitionstoSurreal, Numeric, Surreal, addCommGroup, instAdd, instAddMonoidWithOne, instInhabited, instLE, instLT, instLinearOrder, instNeg, instOne, instZero, liftβ‚‚, mk, partialOrder, toGame
17
Theoremsle, lt, add, isOption, le_moveRight, left_lt_right, lt_moveRight, mk, moveLeft, moveLeft_le, moveLeft_lt, moveRight, neg, sub, numeric_congr, numeric_imp, insertLeft_numeric, insertRight_numeric, le_iff_forall_lt, le_of_lf, lf_asymm, lf_iff_lt, lt_def, lt_iff_exists_le, lt_of_exists_le, lt_of_lf, lt_or_equiv_or_gt, not_fuzzy, numeric_def, numeric_nat, numeric_of_isEmpty, numeric_of_isEmpty_leftMoves, numeric_of_isEmpty_rightMoves, numeric_one, numeric_rec, numeric_toPGame, numeric_zero, bddAbove_of_small, bddAbove_range_of_small, bddBelow_of_small, bddBelow_range_of_small, isOrderedAddMonoid, mk_add, mk_eq_mk, mk_eq_zero, mk_le_mk, mk_lt_mk, mk_lt_mk_moveRight, mk_moveLeft_lt_mk, mk_sub, nat_toGame, one_toGame, zero_def, zero_le_mk, zero_lt_mk, zero_toGame
56
Total73

Ordinal

Definitions

NameCategoryTheorems
toSurreal πŸ“–CompOpβ€”

SetTheory.PGame

Definitions

NameCategoryTheorems
Numeric πŸ“–MathDef
14 mathmath: Surreal.Multiplication.Args.numeric_P24, Surreal.Multiplication.numeric_mul_option, Surreal.Multiplication.numeric_of_ih, numeric_toPGame, Surreal.Multiplication.numeric_option_mul_option, Surreal.Multiplication.numeric_option_mul, numeric_powHalf, Relabelling.numeric_congr, numeric_one, numeric_zero, numeric_def, Surreal.Multiplication.Args.numeric_P1, numeric_of_isEmpty, numeric_nat

Theorems

NameKindAssumesProvesValidatesDepends On
insertLeft_numeric πŸ“–mathematicalNumeric
SetTheory.PGame
le
insertLeftβ€”Numeric.eq_def
le_iff_forall_lt
insertRight_numeric πŸ“–mathematicalNumeric
SetTheory.PGame
le
insertRightβ€”neg_neg
neg_insertLeft_neg
Numeric.neg
insertLeft_numeric
neg_le_neg_iff
le_iff_forall_lt πŸ“–mathematicalNumericSetTheory.PGame
le
Preorder.toLT
instPreorder
moveLeft
moveRight
β€”le_iff_forall_lf
lf_iff_lt
Numeric.moveLeft
Numeric.moveRight
le_of_lf πŸ“–mathematicalLF
Numeric
SetTheory.PGame
le
β€”not_lf
lf_asymm
lf_asymm πŸ“–β€”Numeric
LF
β€”β€”LE.le.moveLeft_lf
LE.le.not_gf
le_trans
lf_of_lt
LE.le.lf_moveRight
lf_iff_lt πŸ“–mathematicalNumericLF
SetTheory.PGame
Preorder.toLT
instPreorder
β€”LF.lt
lf_of_lt
lt_def πŸ“–mathematicalNumericSetTheory.PGame
Preorder.toLT
instPreorder
moveLeft
moveRight
β€”lf_iff_lt
lf_def
Numeric.moveLeft
Numeric.moveRight
lt_iff_exists_le πŸ“–mathematicalNumericSetTheory.PGame
Preorder.toLT
instPreorder
le
moveLeft
moveRight
β€”lf_iff_lt
lf_iff_exists_le
lt_of_exists_le πŸ“–mathematicalNumeric
SetTheory.PGame
le
moveLeft
moveRight
Preorder.toLT
instPreorder
β€”lt_iff_exists_le
lt_of_lf πŸ“–mathematicalLF
Numeric
SetTheory.PGame
Preorder.toLT
instPreorder
β€”lt_or_fuzzy_of_lf
not_fuzzy_of_le
LF.le
lt_or_equiv_or_gt πŸ“–mathematicalNumericSetTheory.PGame
Preorder.toLT
instPreorder
setoid
β€”LF.lt
lf_or_equiv_or_gf
not_fuzzy πŸ“–mathematicalNumericFuzzyβ€”not_lf
LF.le
lf_of_fuzzy
numeric_def πŸ“–mathematicalβ€”Numeric
SetTheory.PGame
Preorder.toLT
instPreorder
moveLeft
moveRight
β€”β€”
numeric_nat πŸ“–mathematicalβ€”Numeric
SetTheory.PGame
instNatCast
β€”numeric_zero
Numeric.add
numeric_one
numeric_of_isEmpty πŸ“–mathematicalβ€”Numericβ€”β€”
numeric_of_isEmpty_leftMoves πŸ“–β€”Numeric
moveRight
β€”β€”β€”
numeric_of_isEmpty_rightMoves πŸ“–β€”Numeric
moveLeft
β€”β€”β€”
numeric_one πŸ“–mathematicalβ€”Numeric
SetTheory.PGame
instOnePGame
β€”numeric_of_isEmpty_rightMoves
isEmpty_one_rightMoves
numeric_zero
numeric_rec πŸ“–β€”Numericβ€”β€”β€”
numeric_toPGame πŸ“–mathematicalβ€”Numeric
Ordinal.toPGame
β€”Ordinal.induction
numeric_of_isEmpty_rightMoves
Ordinal.isEmpty_toPGame_rightMoves
Ordinal.toPGame_moveLeft'
Ordinal.toLeftMovesToPGame_symm_lt
numeric_zero πŸ“–mathematicalβ€”Numeric
SetTheory.PGame
instZero
β€”numeric_of_isEmpty
isEmpty_zero_leftMoves
isEmpty_zero_rightMoves

SetTheory.PGame.LF

Theorems

NameKindAssumesProvesValidatesDepends On
le πŸ“–mathematicalSetTheory.PGame.LF
SetTheory.PGame.Numeric
SetTheory.PGame
SetTheory.PGame.le
β€”SetTheory.PGame.le_of_lf
lt πŸ“–mathematicalSetTheory.PGame.LF
SetTheory.PGame.Numeric
SetTheory.PGame
Preorder.toLT
SetTheory.PGame.instPreorder
β€”SetTheory.PGame.lt_of_lf

SetTheory.PGame.Numeric

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalSetTheory.PGame.NumericSetTheory.PGame
SetTheory.PGame.instAdd
β€”β€”
isOption πŸ“–β€”SetTheory.PGame.IsOption
SetTheory.PGame.Numeric
β€”β€”moveLeft
moveRight
le_moveRight πŸ“–mathematicalSetTheory.PGame.NumericSetTheory.PGame
SetTheory.PGame.le
SetTheory.PGame.moveRight
β€”LT.lt.le
lt_moveRight
left_lt_right πŸ“–mathematicalSetTheory.PGame.NumericSetTheory.PGame
Preorder.toLT
SetTheory.PGame.instPreorder
SetTheory.PGame.moveLeft
SetTheory.PGame.moveRight
β€”β€”
lt_moveRight πŸ“–mathematicalSetTheory.PGame.NumericSetTheory.PGame
Preorder.toLT
SetTheory.PGame.instPreorder
SetTheory.PGame.moveRight
β€”SetTheory.PGame.LF.lt
SetTheory.PGame.lf_moveRight
moveRight
mk πŸ“–β€”SetTheory.PGame
Preorder.toLT
SetTheory.PGame.instPreorder
SetTheory.PGame.moveLeft
SetTheory.PGame.moveRight
SetTheory.PGame.Numeric
β€”β€”SetTheory.PGame.numeric_def
moveLeft πŸ“–mathematicalSetTheory.PGame.NumericSetTheory.PGame.moveLeftβ€”β€”
moveLeft_le πŸ“–mathematicalSetTheory.PGame.NumericSetTheory.PGame
SetTheory.PGame.le
SetTheory.PGame.moveLeft
β€”LT.lt.le
moveLeft_lt
moveLeft_lt πŸ“–mathematicalSetTheory.PGame.NumericSetTheory.PGame
Preorder.toLT
SetTheory.PGame.instPreorder
SetTheory.PGame.moveLeft
β€”SetTheory.PGame.LF.lt
SetTheory.PGame.moveLeft_lf
moveLeft
moveRight πŸ“–mathematicalSetTheory.PGame.NumericSetTheory.PGame.moveRightβ€”β€”
neg πŸ“–mathematicalSetTheory.PGame.NumericSetTheory.PGame
SetTheory.PGame.instNeg
β€”SetTheory.PGame.neg_lt_neg_iff
sub πŸ“–mathematicalSetTheory.PGame.NumericSetTheory.PGame
SetTheory.PGame.instSub
β€”add
neg

SetTheory.PGame.Relabelling

Theorems

NameKindAssumesProvesValidatesDepends On
numeric_congr πŸ“–mathematicalβ€”SetTheory.PGame.Numericβ€”numeric_imp
numeric_imp πŸ“–β€”SetTheory.PGame.Numericβ€”β€”SetTheory.PGame.lt_congr
equiv
SetTheory.PGame.Numeric.left_lt_right
SetTheory.PGame.Numeric.moveLeft
SetTheory.PGame.Numeric.moveRight

Surreal

Definitions

NameCategoryTheorems
addCommGroup πŸ“–CompOp
2 mathmath: isOrderedAddMonoid, mk_sub
instAdd πŸ“–CompOp
1 mathmath: mk_add
instAddMonoidWithOne πŸ“–CompOp
9 mathmath: nsmul_pow_two_powHalf, zsmul_pow_two_powHalf, nat_toGame, dyadicMap_apply, zero_toGame, double_powHalf_succ_eq_powHalf, dyadicMap_apply_pow, nsmul_pow_two_powHalf', one_toGame
instInhabited πŸ“–CompOpβ€”
instLE πŸ“–CompOp
7 mathmath: instZeroLEOneClass, bddBelow_range_of_small, bddAbove_range_of_small, bddBelow_of_small, zero_le_mk, bddAbove_of_small, mk_le_mk
instLT πŸ“–CompOp
4 mathmath: mk_lt_mk_moveRight, zero_lt_mk, mk_moveLeft_lt_mk, mk_lt_mk
instLinearOrder πŸ“–CompOpβ€”
instNeg πŸ“–CompOpβ€”
instOne πŸ“–CompOp
4 mathmath: instZeroLEOneClass, nsmul_pow_two_powHalf, powHalf_zero, one_toGame
instZero πŸ“–CompOp
6 mathmath: instZeroLEOneClass, zero_def, zero_lt_mk, zero_toGame, zero_le_mk, mk_eq_zero
liftβ‚‚ πŸ“–CompOpβ€”
mk πŸ“–CompOpβ€”
partialOrder πŸ“–CompOp
5 mathmath: instIsStrictOrderedRing, nat_toGame, zero_toGame, isOrderedAddMonoid, one_toGame
toGame πŸ“–CompOp
3 mathmath: nat_toGame, zero_toGame, one_toGame

Theorems

NameKindAssumesProvesValidatesDepends On
bddAbove_of_small πŸ“–mathematicalβ€”BddAbove
Surreal
instLE
β€”Subtype.range_coe_subtype
bddAbove_range_of_small
bddAbove_range_of_small πŸ“–mathematicalβ€”BddAbove
Surreal
instLE
Set.range
β€”Quotient.induction_on_pi
Subtype.prop
PEmpty.instIsEmpty
SetTheory.PGame.Numeric.moveLeft
Set.forall_mem_range
Equiv.symm_apply_apply
SetTheory.PGame.le_iff_forall_lf
SetTheory.PGame.moveLeft_lf
bddBelow_of_small πŸ“–mathematicalβ€”BddBelow
Surreal
instLE
β€”Subtype.range_coe_subtype
bddBelow_range_of_small
bddBelow_range_of_small πŸ“–mathematicalβ€”BddBelow
Surreal
instLE
Set.range
β€”Quotient.induction_on_pi
Subtype.prop
PEmpty.instIsEmpty
SetTheory.PGame.Numeric.moveRight
Set.forall_mem_range
Equiv.symm_apply_apply
SetTheory.PGame.le_iff_forall_lf
SetTheory.PGame.lf_moveRight
isOrderedAddMonoid πŸ“–mathematicalβ€”IsOrderedAddMonoid
Surreal
AddCommGroup.toAddCommMonoid
addCommGroup
partialOrder
β€”add_le_add_left
SetTheory.PGame.addRightMono
mk_add πŸ“–mathematicalSetTheory.PGame.NumericSetTheory.PGame
SetTheory.PGame.instAdd
SetTheory.PGame.Numeric.add
Surreal
instAdd
β€”SetTheory.PGame.Numeric.add
mk_eq_mk πŸ“–mathematicalSetTheory.PGame.NumericSetTheory.PGame
SetTheory.PGame.setoid
β€”Quotient.eq
mk_eq_zero πŸ“–mathematicalSetTheory.PGame.NumericSurreal
instZero
SetTheory.PGame
SetTheory.PGame.setoid
SetTheory.PGame.instZero
β€”Quotient.eq
SetTheory.PGame.numeric_zero
mk_le_mk πŸ“–mathematicalSetTheory.PGame.NumericSurreal
instLE
SetTheory.PGame
SetTheory.PGame.le
β€”β€”
mk_lt_mk πŸ“–mathematicalSetTheory.PGame.NumericSurreal
instLT
SetTheory.PGame
Preorder.toLT
SetTheory.PGame.instPreorder
β€”β€”
mk_lt_mk_moveRight πŸ“–mathematicalSetTheory.PGame.NumericSurreal
instLT
SetTheory.PGame.moveRight
SetTheory.PGame.Numeric.moveRight
β€”SetTheory.PGame.Numeric.lt_moveRight
mk_moveLeft_lt_mk πŸ“–mathematicalSetTheory.PGame.NumericSurreal
instLT
SetTheory.PGame.moveLeft
SetTheory.PGame.Numeric.moveLeft
β€”SetTheory.PGame.Numeric.moveLeft_lt
mk_sub πŸ“–mathematicalSetTheory.PGame.NumericSetTheory.PGame
SetTheory.PGame.instSub
SetTheory.PGame.Numeric.sub
Surreal
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
addCommGroup
β€”SetTheory.PGame.Numeric.sub
nat_toGame πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
Surreal
SetTheory.Game
PartialOrder.toPreorder
partialOrder
SetTheory.Game.instPartialOrderGame
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
instAddMonoidWithOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
SetTheory.Game.instAddCommGroupWithOneGame
OrderAddMonoidHom.instFunLike
toGame
AddMonoidWithOne.toNatCast
β€”map_natCast'
OrderAddMonoidHom.instAddMonoidHomClass
one_toGame
one_toGame πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
Surreal
SetTheory.Game
PartialOrder.toPreorder
partialOrder
SetTheory.Game.instPartialOrderGame
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
instAddMonoidWithOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
SetTheory.Game.instAddCommGroupWithOneGame
OrderAddMonoidHom.instFunLike
toGame
instOne
AddMonoidWithOne.toOne
β€”β€”
zero_def πŸ“–mathematicalβ€”Surreal
instZero
SetTheory.PGame
SetTheory.PGame.instZero
SetTheory.PGame.numeric_zero
β€”β€”
zero_le_mk πŸ“–mathematicalSetTheory.PGame.NumericSurreal
instLE
instZero
SetTheory.PGame
SetTheory.PGame.le
SetTheory.PGame.instZero
β€”β€”
zero_lt_mk πŸ“–mathematicalSetTheory.PGame.NumericSurreal
instLT
instZero
SetTheory.PGame
Preorder.toLT
SetTheory.PGame.instPreorder
SetTheory.PGame.instZero
β€”β€”
zero_toGame πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
Surreal
SetTheory.Game
PartialOrder.toPreorder
partialOrder
SetTheory.Game.instPartialOrderGame
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
instAddMonoidWithOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
SetTheory.Game.instAddCommGroupWithOneGame
OrderAddMonoidHom.instFunLike
toGame
instZero
SetTheory.Game.instZero
β€”β€”

(root)

Definitions

NameCategoryTheorems
Surreal πŸ“–CompOp
30 mathmath: Surreal.mk_lt_mk_moveRight, Surreal.instZeroLEOneClass, Surreal.nsmul_pow_two_powHalf, Surreal.zero_def, Surreal.zsmul_pow_two_powHalf, Surreal.dyadicMap_apply_pow', Surreal.instIsStrictOrderedRing, Surreal.powHalf_zero, Surreal.zero_lt_mk, Surreal.bddBelow_range_of_small, Surreal.mk_moveLeft_lt_mk, Surreal.bddAbove_range_of_small, Surreal.nat_toGame, Surreal.bddBelow_of_small, Surreal.dyadicMap_apply, Surreal.zero_toGame, Surreal.zero_le_mk, Surreal.mk_eq_zero, Surreal.isOrderedAddMonoid, Surreal.mk_sub, Surreal.bddAbove_of_small, Surreal.instNontrivial, Surreal.dyadic_aux, Surreal.double_powHalf_succ_eq_powHalf, Surreal.mk_lt_mk, Surreal.mk_add, Surreal.dyadicMap_apply_pow, Surreal.nsmul_pow_two_powHalf', Surreal.one_toGame, Surreal.mk_le_mk

---

← Back to Index