Documentation Verification Report

Class

πŸ“ Source: Mathlib/SetTheory/ZFC/Class.lean

Statistics

MetricCount
DefinitionsClass, ToSet, classToCong, congToClass, fval, instCoeZFSet, instMembership, instWellFoundedRelation, iota, ofSet, powerset, sInter, sUnion, sep, univ, Β«term_β€²_Β», Β«termβ‹‚β‚€_Β», Β«term⋃₀_Β», choice, coeEquiv, toSet_equiv, instComplClass, instEmptyCollectionClass, instHasSubsetClass, instInsertZFSetClass, instInterClass, instNonemptyClass, instSDiffClass, instUnionClass
29
TheoremsclassToCong_empty, coe_apply, coe_diff, coe_empty, coe_insert, coe_inter, coe_mem, coe_powerset, coe_sInter, coe_sUnion, coe_sep, coe_subset, coe_union, congToClass_empty, eq_univ_iff_forall, eq_univ_of_forall, eq_univ_of_powerset_subset, ext, ext_iff, fval_ex, instIsWellFoundedMem, iota_ex, iota_val, mem_asymm, mem_def, mem_irrefl, mem_of_mem_sInter, mem_sInter, mem_sUnion, mem_univ, mem_univ_hom, mem_wf, notMem_empty, not_empty_hom, inj, powerset_apply, sInter_apply, sInter_empty, sUnion_apply, sUnion_empty, toSet_of_ZFSet, univ_notMem_univ, choice_isFunc, choice_mem, choice_mem_aux, coeEquiv_apply_coe, isOrdinal_notMem_univ, map_fval
48
Total77

Class

Definitions

NameCategoryTheorems
ToSet πŸ“–MathDef
1 mathmath: toSet_of_ZFSet
classToCong πŸ“–CompOp
1 mathmath: classToCong_empty
congToClass πŸ“–CompOp
1 mathmath: congToClass_empty
fval πŸ“–CompOp
3 mathmath: fval_ex, ZFSet.choice_mem, ZFSet.map_fval
instCoeZFSet πŸ“–CompOpβ€”
instMembership πŸ“–CompOp
14 mathmath: iota_ex, notMem_empty, mem_univ, coe_mem, univ_notMem_univ, mem_sInter, ZFSet.isOrdinal_notMem_univ, mem_def, fval_ex, mem_irrefl, ZFSet.choice_mem, mem_sUnion, instIsWellFoundedMem, mem_wf
instWellFoundedRelation πŸ“–CompOpβ€”
iota πŸ“–CompOp
2 mathmath: iota_ex, iota_val
ofSet πŸ“–CompOp
20 mathmath: iota_val, mem_univ, coe_union, coe_insert, coe_mem, coe_sInter, coe_sUnion, coe_apply, coe_powerset, toSet_of_ZFSet, coe_subset, coe_sep, coe_diff, ZFSet.iUnion_vonNeumann, coe_empty, mem_def, coe_inter, ZFSet.choice_mem, powerset_apply, ZFSet.map_fval
powerset πŸ“–CompOp
2 mathmath: coe_powerset, powerset_apply
sInter πŸ“–CompOp
4 mathmath: coe_sInter, sInter_apply, mem_sInter, sInter_empty
sUnion πŸ“–CompOp
4 mathmath: sUnion_empty, coe_sUnion, mem_sUnion, sUnion_apply
sep πŸ“–CompOpβ€”
univ πŸ“–CompOp
11 mathmath: iota_ex, mem_univ, univ_notMem_univ, eq_univ_iff_forall, ZFSet.isOrdinal_notMem_univ, mem_univ_hom, eq_univ_of_forall, ZFSet.iUnion_vonNeumann, sInter_empty, fval_ex, eq_univ_of_powerset_subset
Β«term_β€²_Β» πŸ“–CompOpβ€”
Β«termβ‹‚β‚€_Β» πŸ“–CompOpβ€”
Β«term⋃₀_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
classToCong_empty πŸ“–mathematicalβ€”classToCong
Class
instEmptyCollectionClass
Set
Set.instEmptyCollection
β€”β€”
coe_apply πŸ“–mathematicalβ€”ofSet
ZFSet
ZFSet.instMembership
β€”β€”
coe_diff πŸ“–mathematicalβ€”ofSet
ZFSet
ZFSet.instSDiff
Class
instSDiffClass
β€”ext
ZFSet.mem_sdiff
coe_empty πŸ“–mathematicalβ€”ofSet
ZFSet
ZFSet.instEmptyCollection
Class
instEmptyCollectionClass
β€”ext
ZFSet.notMem_empty
coe_insert πŸ“–mathematicalβ€”ofSet
ZFSet
ZFSet.instInsert
Class
instInsertZFSetClass
β€”ext
ZFSet.mem_insert_iff
coe_inter πŸ“–mathematicalβ€”ofSet
ZFSet
ZFSet.instInter
Class
instInterClass
β€”ext
ZFSet.mem_inter
coe_mem πŸ“–mathematicalβ€”Class
instMembership
ofSet
β€”toSet_of_ZFSet
coe_powerset πŸ“–mathematicalβ€”ofSet
ZFSet.powerset
powerset
β€”ext
ZFSet.mem_powerset
coe_sInter πŸ“–mathematicalZFSet.NonemptyofSet
ZFSet.sInter
sInter
β€”Set.ext
ZFSet.mem_sInter
sInter_apply
coe_sUnion πŸ“–mathematicalβ€”ofSet
ZFSet.sUnion
sUnion
β€”ext
ZFSet.mem_sUnion
sUnion_apply
coe_sep πŸ“–mathematicalβ€”ofSet
ZFSet.sep
setOf
ZFSet
ZFSet.instMembership
β€”ext
ZFSet.mem_sep
coe_subset πŸ“–mathematicalβ€”Class
instHasSubsetClass
ofSet
ZFSet
ZFSet.instHasSubset
β€”β€”
coe_union πŸ“–mathematicalβ€”ofSet
ZFSet
ZFSet.instUnion
Class
instUnionClass
β€”ext
ZFSet.mem_union
congToClass_empty πŸ“–mathematicalβ€”congToClass
Set
Class
Set.instEmptyCollection
instEmptyCollectionClass
β€”β€”
eq_univ_iff_forall πŸ“–mathematicalβ€”univβ€”Set.eq_univ_iff_forall
eq_univ_of_forall πŸ“–mathematicalβ€”univβ€”Set.eq_univ_of_forall
eq_univ_of_powerset_subset πŸ“–mathematicalClass
instHasSubsetClass
powerset
univβ€”eq_univ_of_forall
WellFounded.min_mem
ZFSet.mem_wf
Mathlib.Tactic.Push.not_forall_eq
WellFounded.not_lt_min
coe_apply
ext πŸ“–β€”β€”β€”β€”Set.ext
ext_iff πŸ“–β€”β€”β€”β€”ext
fval_ex πŸ“–mathematicalβ€”Class
instMembership
univ
fval
β€”iota_ex
instIsWellFoundedMem πŸ“–mathematicalβ€”IsWellFounded
Class
instMembership
β€”mem_wf
iota_ex πŸ“–mathematicalβ€”Class
instMembership
univ
iota
β€”mem_univ
iota_val
ext
coe_empty
iota_val πŸ“–mathematicalβ€”iota
ofSet
β€”ext
mem_asymm πŸ“–β€”Class
instMembership
β€”β€”asymm_of
instAsymmOfIsWellFounded
instIsWellFoundedMem
mem_def πŸ“–mathematicalβ€”Class
instMembership
ofSet
β€”β€”
mem_irrefl πŸ“–mathematicalβ€”Class
instMembership
β€”irrefl_of
instAsymmOfIsWellFounded
instIsWellFoundedMem
mem_of_mem_sInter πŸ“–β€”Class
instMembership
sInter
β€”β€”coe_mem
mem_sInter πŸ“–mathematicalSet.Nonempty
ZFSet
Class
instMembership
sInter
β€”mem_of_mem_sInter
coe_mem
mem_sUnion πŸ“–mathematicalβ€”Class
instMembership
sUnion
β€”coe_mem
mem_univ πŸ“–mathematicalβ€”Class
instMembership
univ
ofSet
β€”β€”
mem_univ_hom πŸ“–mathematicalβ€”univβ€”β€”
mem_wf πŸ“–mathematicalβ€”Class
instMembership
β€”ZFSet.inductionOn
notMem_empty πŸ“–mathematicalβ€”Class
instMembership
instEmptyCollectionClass
β€”β€”
not_empty_hom πŸ“–mathematicalβ€”Class
instEmptyCollectionClass
β€”β€”
powerset_apply πŸ“–mathematicalβ€”powerset
Class
instHasSubsetClass
ofSet
β€”β€”
sInter_apply πŸ“–mathematicalβ€”sInter
ZFSet
ZFSet.instMembership
β€”β€”
sInter_empty πŸ“–mathematicalβ€”sInter
Class
instEmptyCollectionClass
univ
β€”sInter.eq_1
classToCong_empty
Set.sInter_empty
univ.eq_1
sUnion_apply πŸ“–mathematicalβ€”sUnion
ZFSet
ZFSet.instMembership
β€”coe_mem
sUnion_empty πŸ“–mathematicalβ€”sUnion
Class
instEmptyCollectionClass
β€”ext
toSet_of_ZFSet πŸ“–mathematicalβ€”ToSet
ofSet
β€”β€”
univ_notMem_univ πŸ“–mathematicalβ€”Class
instMembership
univ
β€”mem_irrefl

Class.ofSet

Theorems

NameKindAssumesProvesValidatesDepends On
inj πŸ“–β€”Class.ofSetβ€”β€”ZFSet.ext

ZFSet

Definitions

NameCategoryTheorems
choice πŸ“–CompOp
2 mathmath: choice_isFunc, choice_mem
coeEquiv πŸ“–CompOp
1 mathmath: coeEquiv_apply_coe
toSet_equiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
choice_isFunc πŸ“–mathematicalZFSet
instMembership
instEmptyCollection
IsFunc
sUnion
choice
β€”map_isFunc
mem_sUnion
choice_mem_aux
choice_mem πŸ“–mathematicalZFSet
instMembership
instEmptyCollection
Class
Class.instMembership
Class.ofSet
Class.fval
choice
β€”map_fval
Class.coe_mem
Class.coe_apply
choice_mem_aux
choice_mem_aux πŸ“–mathematicalZFSet
instMembership
instEmptyCollection
instInhabitedβ€”by_contradiction
eq_empty
coeEquiv_apply_coe πŸ“–mathematicalβ€”Set
ZFSet
Small
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
coeEquiv
SetLike.coe
instSetLike
β€”β€”
isOrdinal_notMem_univ πŸ“–mathematicalβ€”Class
Class.instMembership
Class.univ
IsOrdinal
β€”Class.coe_apply
IsOrdinal.mem
IsOrdinal.mem_trans
Class.mem_irrefl
Class.coe_mem
map_fval πŸ“–mathematicalZFSet
instMembership
Class.fval
Class.ofSet
map
β€”Class.iota_val
Class.toSet_of_ZFSet
Class.coe_apply
mem_map
pair_injective

(root)

Definitions

NameCategoryTheorems
Class πŸ“–CompOp
26 mathmath: Class.iota_ex, Class.notMem_empty, Class.mem_univ, Class.coe_union, Class.coe_insert, Class.coe_mem, Class.sUnion_empty, Class.univ_notMem_univ, Class.congToClass_empty, Class.mem_sInter, Class.not_empty_hom, ZFSet.isOrdinal_notMem_univ, Class.coe_subset, Class.coe_diff, Class.sInter_empty, Class.coe_empty, Class.mem_def, Class.fval_ex, Class.mem_irrefl, Class.coe_inter, ZFSet.choice_mem, Class.powerset_apply, Class.mem_sUnion, Class.instIsWellFoundedMem, Class.classToCong_empty, Class.mem_wf
instComplClass πŸ“–CompOpβ€”
instEmptyCollectionClass πŸ“–CompOp
7 mathmath: Class.notMem_empty, Class.sUnion_empty, Class.congToClass_empty, Class.not_empty_hom, Class.sInter_empty, Class.coe_empty, Class.classToCong_empty
instHasSubsetClass πŸ“–CompOp
2 mathmath: Class.coe_subset, Class.powerset_apply
instInsertZFSetClass πŸ“–CompOp
1 mathmath: Class.coe_insert
instInterClass πŸ“–CompOp
1 mathmath: Class.coe_inter
instNonemptyClass πŸ“–CompOpβ€”
instSDiffClass πŸ“–CompOp
1 mathmath: Class.coe_diff
instUnionClass πŸ“–CompOp
1 mathmath: Class.coe_union

---

← Back to Index