| Name | Category | Theorems |
ToSet π | MathDef | 1 mathmath: toSet_of_ZFSet
|
classToCong π | CompOp | 1 mathmath: classToCong_empty
|
congToClass π | CompOp | 1 mathmath: congToClass_empty
|
fval π | CompOp | 3 mathmath: fval_ex, ZFSet.choice_mem, ZFSet.map_fval
|
instCoeZFSet π | CompOp | β |
instMembership π | CompOp | 14 mathmath: iota_ex, notMem_empty, mem_univ, coe_mem, univ_notMem_univ, mem_sInter, ZFSet.isOrdinal_notMem_univ, mem_def, fval_ex, mem_irrefl, ZFSet.choice_mem, mem_sUnion, instIsWellFoundedMem, mem_wf
|
instWellFoundedRelation π | CompOp | β |
iota π | CompOp | 2 mathmath: iota_ex, iota_val
|
ofSet π | CompOp | 20 mathmath: iota_val, mem_univ, coe_union, coe_insert, coe_mem, coe_sInter, coe_sUnion, coe_apply, coe_powerset, toSet_of_ZFSet, coe_subset, coe_sep, coe_diff, ZFSet.iUnion_vonNeumann, coe_empty, mem_def, coe_inter, ZFSet.choice_mem, powerset_apply, ZFSet.map_fval
|
powerset π | CompOp | 2 mathmath: coe_powerset, powerset_apply
|
sInter π | CompOp | 4 mathmath: coe_sInter, sInter_apply, mem_sInter, sInter_empty
|
sUnion π | CompOp | 4 mathmath: sUnion_empty, coe_sUnion, mem_sUnion, sUnion_apply
|
sep π | CompOp | β |
univ π | CompOp | 11 mathmath: iota_ex, mem_univ, univ_notMem_univ, eq_univ_iff_forall, ZFSet.isOrdinal_notMem_univ, mem_univ_hom, eq_univ_of_forall, ZFSet.iUnion_vonNeumann, sInter_empty, fval_ex, eq_univ_of_powerset_subset
|
Β«term_β²_Β» π | CompOp | β |
Β«termββ_Β» π | CompOp | β |
Β«termββ_Β» π | CompOp | β |