Documentation Verification Report

Ordinal

πŸ“ Source: Mathlib/SetTheory/ZFC/Ordinal.lean

Statistics

MetricCount
DefinitionstoPSet, toZFSet, toZFSetIso, IsOrdinal, IsTransitive
5
Theoremscard_toZFSet, coe_toZFSet, mem_toPSet_iff, mem_toZFSet_iff, mk_toPSet, rank_toPSet, rank_toZFSet, toZFSetIso_apply, toZFSetIso_symm_apply, toZFSet_injective, toZFSet_mem_toZFSet_iff, toZFSet_monotone, toZFSet_strictMono, toZFSet_subset_toZFSet_iff, toZFSet_succ, toZFSet_zero, type_toPSet, eq_or_mem_of_subset, isTrans, isTransitive, isTrichotomous, isWellOrder, mem, mem_of_subset_of_mem, mem_or_subset, mem_trans, mem_trans', mem_trichotomous, notMem_iff_subset, not_subset_iff_mem, rank_inj, rank_le_iff_subset, rank_lt_iff_mem, subset_iff_eq_or_mem, subset_of_mem, subset_total, toZFSet_rank_eq, trichotomous, iUnion, inter, mem_trans, powerset, sUnion, sUnion', sUnion_subset, subset_of_mem, subset_powerset, union, isOrdinal_empty, isOrdinal_iff_forall_mem_isOrdinal, isOrdinal_iff_forall_mem_isTransitive, isOrdinal_iff_isTrans, isOrdinal_iff_isTrichotomous, isOrdinal_iff_isWellOrder, isOrdinal_iff_mem_range_toZFSet, isOrdinal_iff_trichotomous, isOrdinal_succ, isOrdinal_toZFSet, isTransitive_empty, isTransitive_iff_mem_trans, isTransitive_iff_sUnion_subset, isTransitive_iff_subset_powerset
62
Total67

Ordinal

Definitions

NameCategoryTheorems
toPSet πŸ“–CompOp
4 mathmath: mk_toPSet, mem_toPSet_iff, rank_toPSet, type_toPSet
toZFSet πŸ“–CompOp
17 mathmath: coe_toZFSet, mem_toZFSet_iff, ZFSet.isOrdinal_iff_mem_range_toZFSet, ZFSet.IsOrdinal.toZFSet_rank_eq, toZFSet_strictMono, mk_toPSet, card_toZFSet, ZFSet.isOrdinal_toZFSet, toZFSetIso_apply, toZFSet_subset_vonNeumann, rank_toZFSet, toZFSet_injective, toZFSet_subset_toZFSet_iff, toZFSet_monotone, toZFSet_zero, toZFSet_succ, toZFSet_mem_toZFSet_iff
toZFSetIso πŸ“–CompOp
2 mathmath: toZFSetIso_apply, toZFSetIso_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
card_toZFSet πŸ“–mathematicalβ€”ZFSet.card
toZFSet
card
β€”ZFSet.cardinalMk_coe_sort
mk_Iio_ordinal
Cardinal.mk_image_eq
toZFSet_injective
coe_toZFSet πŸ“–mathematicalβ€”SetLike.coe
ZFSet
ZFSet.instSetLike
toZFSet
Set.image
Ordinal
Set.Iio
PartialOrder.toPreorder
partialOrder
β€”Set.ext
mem_toPSet_iff πŸ“–mathematicalβ€”PSet
PSet.instMembership
toPSet
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
PSet.Equiv
β€”toPSet.eq_1
PSet.mem_def
Equiv.exists_congr_left
mem_toZFSet_iff πŸ“–mathematicalβ€”ZFSet
ZFSet.instMembership
toZFSet
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”toZFSet.eq_1
ZFSet.mk_eq
ZFSet.mk_mem_iff
mem_toPSet_iff
ZFSet.eq
PSet.Equiv.comm
mk_toPSet πŸ“–mathematicalβ€”toPSet
toZFSet
β€”β€”
rank_toPSet πŸ“–mathematicalβ€”PSet.rank
toPSet
β€”toPSet.eq_1
PSet.rank.eq_1
iSup_succ
Equiv.iSup_comp
rank_toZFSet πŸ“–mathematicalβ€”ZFSet.rank
toZFSet
β€”rank_toPSet
toZFSetIso_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Ordinal
ZFSet
ZFSet.IsOrdinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
ZFSet.instPartialOrder
RelIso.instFunLike
toZFSetIso
toZFSet
ZFSet.isOrdinal_toZFSet
β€”β€”
toZFSetIso_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
ZFSet
ZFSet.IsOrdinal
Ordinal
Preorder.toLE
PartialOrder.toPreorder
ZFSet.instPartialOrder
partialOrder
RelIso.instFunLike
RelIso.symm
toZFSetIso
ZFSet.rank
β€”β€”
toZFSet_injective πŸ“–mathematicalβ€”Ordinal
ZFSet
toZFSet
β€”StrictMono.injective
toZFSet_strictMono
toZFSet_mem_toZFSet_iff πŸ“–mathematicalβ€”ZFSet
ZFSet.instMembership
toZFSet
Ordinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”Mathlib.Tactic.Contrapose.contrapose₁
ZFSet.notMem_of_subset
toZFSet_monotone
toZFSet_monotone πŸ“–mathematicalβ€”Monotone
Ordinal
ZFSet
PartialOrder.toPreorder
partialOrder
ZFSet.instPartialOrder
toZFSet
β€”mem_toZFSet_iff
LT.lt.trans_le
toZFSet_strictMono πŸ“–mathematicalβ€”StrictMono
Ordinal
ZFSet
PartialOrder.toPreorder
partialOrder
ZFSet.instPartialOrder
toZFSet
β€”ZFSet.instIsNonstrictStrictOrderSubsetSSubset
LT.lt.le
toZFSet_subset_toZFSet_iff πŸ“–mathematicalβ€”ZFSet
ZFSet.instHasSubset
toZFSet
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
β€”Mathlib.Tactic.Contrapose.contrapose₁
ZFSet.not_subset_of_mem
toZFSet_monotone
toZFSet_succ πŸ“–mathematicalβ€”toZFSet
Order.succ
Ordinal
PartialOrder.toPreorder
partialOrder
instSuccOrder
ZFSet
ZFSet.instInsert
β€”ZFSet.ext
instNoMaxOrder
toZFSet_zero πŸ“–mathematicalβ€”toZFSet
Ordinal
zero
ZFSet
ZFSet.instEmptyCollection
β€”ZFSet.ext
canonicallyOrderedAdd
type_toPSet πŸ“–mathematicalβ€”PSet.Type
toPSet
ToType
β€”toPSet.eq_1

ZFSet

Definitions

NameCategoryTheorems
IsOrdinal πŸ“–CompData
12 mathmath: isOrdinal_iff_forall_mem_isTransitive, isOrdinal_empty, isOrdinal_notMem_univ, isOrdinal_iff_mem_range_toZFSet, isOrdinal_toZFSet, Ordinal.toZFSetIso_apply, isOrdinal_iff_isTrans, isOrdinal_iff_isTrichotomous, isOrdinal_iff_trichotomous, isOrdinal_iff_isWellOrder, isOrdinal_iff_forall_mem_isOrdinal, Ordinal.toZFSetIso_symm_apply
IsTransitive πŸ“–MathDef
12 mathmath: isOrdinal_iff_forall_mem_isTransitive, IsOrdinal.isTransitive, isOrdinal_iff_isTrans, isTransitive_iff_subset_powerset, isTransitive_empty, isOrdinal_iff_isTrichotomous, isOrdinal_iff_trichotomous, isOrdinal_iff_isWellOrder, isTransitive_iff_mem_trans, isOrdinal_iff_forall_mem_isOrdinal, isTransitive_vonNeumann, isTransitive_iff_sUnion_subset

Theorems

NameKindAssumesProvesValidatesDepends On
isOrdinal_empty πŸ“–mathematicalβ€”IsOrdinal
ZFSet
instEmptyCollection
β€”isTransitive_empty
notMem_empty
isOrdinal_iff_forall_mem_isOrdinal πŸ“–mathematicalβ€”IsOrdinal
IsTransitive
β€”IsOrdinal.isTransitive
IsOrdinal.mem
isOrdinal_iff_forall_mem_isTransitive
isOrdinal_iff_forall_mem_isTransitive πŸ“–mathematicalβ€”IsOrdinal
IsTransitive
β€”IsOrdinal.isTransitive
IsOrdinal.mem
IsTransitive.mem_trans
isOrdinal_iff_isTrans πŸ“–mathematicalβ€”IsOrdinal
IsTransitive
IsTrans
ZFSet
instMembership
Subrel
β€”IsOrdinal.isTransitive
IsOrdinal.isTrans
IsTransitive.mem_trans
isOrdinal_iff_isTrichotomous πŸ“–mathematicalβ€”IsOrdinal
IsTransitive
ZFSet
instMembership
Subrel
β€”isOrdinal_iff_trichotomous
isOrdinal_iff_isWellOrder πŸ“–mathematicalβ€”IsOrdinal
IsTransitive
IsWellOrder
ZFSet
instMembership
Subrel
β€”IsOrdinal.isTransitive
IsOrdinal.isWellOrder
isOrdinal_iff_isTrans
IsWellOrder.toIsTrans
isOrdinal_iff_mem_range_toZFSet πŸ“–mathematicalβ€”IsOrdinal
ZFSet
Set
Set.instMembership
Set.range
Ordinal
Ordinal.toZFSet
β€”IsOrdinal.toZFSet_rank_eq
Set.mem_range_self
isOrdinal_toZFSet
isOrdinal_iff_trichotomous πŸ“–mathematicalβ€”IsOrdinal
IsTransitive
ZFSet
instMembership
Subrel
β€”IsOrdinal.isTransitive
IsOrdinal.trichotomous
isOrdinal_iff_isTrans
trichotomous_of
asymm
Subrel.instAsymmSubtype
instAsymmOfIsWellFounded
instIsWellFoundedMem
WellFounded.asymmetric₃
mem_wf
isOrdinal_succ πŸ“–mathematicalIsOrdinalZFSet
instInsert
β€”mem_insert_iff
HasSubset.Subset.trans
instIsTransSubset
IsOrdinal.subset_of_mem
IsOrdinal.mem_trans
IsOrdinal.mem_trans'
isOrdinal_toZFSet πŸ“–mathematicalβ€”IsOrdinal
Ordinal.toZFSet
β€”Ordinal.mem_toZFSet_iff
Ordinal.toZFSet_mem_toZFSet_iff
LT.lt.trans
isTransitive_empty πŸ“–mathematicalβ€”IsTransitive
ZFSet
instEmptyCollection
β€”notMem_empty
isTransitive_iff_mem_trans πŸ“–mathematicalβ€”IsTransitive
ZFSet
instMembership
β€”IsTransitive.subset_of_mem
isTransitive_iff_sUnion_subset πŸ“–mathematicalβ€”IsTransitive
ZFSet
instHasSubset
sUnion
β€”mem_sUnion
IsTransitive.mem_trans
mem_sUnion_of_mem
isTransitive_iff_subset_powerset πŸ“–mathematicalβ€”IsTransitive
ZFSet
instHasSubset
powerset
β€”mem_powerset
IsTransitive.subset_of_mem

ZFSet.IsOrdinal

Theorems

NameKindAssumesProvesValidatesDepends On
eq_or_mem_of_subset πŸ“–mathematicalZFSet.IsOrdinal
ZFSet
ZFSet.instHasSubset
ZFSet.instMembershipβ€”subset_iff_eq_or_mem
isTrans πŸ“–mathematicalZFSet.IsOrdinalIsTrans
ZFSet
ZFSet.instMembership
Subrel
β€”mem_trans'
isTransitive πŸ“–mathematicalZFSet.IsOrdinalZFSet.IsTransitiveβ€”β€”
isTrichotomous πŸ“–mathematicalZFSet.IsOrdinalZFSet
ZFSet.instMembership
Subrel
β€”trichotomous
isWellOrder πŸ“–mathematicalZFSet.IsOrdinalIsWellOrder
ZFSet
ZFSet.instMembership
Subrel
β€”trichotomous
isTrans
RelEmbedding.wellFounded
ZFSet.mem_wf
mem πŸ“–β€”ZFSet.IsOrdinal
ZFSet
ZFSet.instMembership
β€”β€”isTrans
subset_of_mem
ZFSet.isOrdinal_iff_isTrans
mem_trans'
RelEmbedding.isTrans
mem_of_subset_of_mem πŸ“–β€”ZFSet.IsOrdinal
ZFSet
ZFSet.instHasSubset
ZFSet.instMembership
β€”β€”eq_or_mem_of_subset
mem
mem_trans
mem_or_subset πŸ“–mathematicalZFSet.IsOrdinalZFSet
ZFSet.instMembership
ZFSet.instHasSubset
β€”notMem_iff_subset
mem_trans πŸ“–β€”ZFSet.IsOrdinal
ZFSet
ZFSet.instMembership
β€”β€”ZFSet.IsTransitive.mem_trans
isTransitive
mem_trans' πŸ“–β€”ZFSet.IsOrdinal
ZFSet
ZFSet.instMembership
β€”β€”β€”
mem_trichotomous πŸ“–mathematicalZFSet.IsOrdinalZFSet
ZFSet.instMembership
β€”subset_iff_eq_or_mem
mem_or_subset
notMem_iff_subset πŸ“–mathematicalZFSet.IsOrdinalZFSet
ZFSet.instMembership
ZFSet.instHasSubset
β€”Sym2.GameAdd.induction
ZFSet.mem_wf
mem_of_subset_of_mem
Sym2.GameAdd.fst_snd
mem
ZFSet.mem_irrefl
not_subset_iff_mem πŸ“–mathematicalZFSet.IsOrdinalZFSet
ZFSet.instHasSubset
ZFSet.instMembership
β€”not_iff_comm
notMem_iff_subset
rank_inj πŸ“–mathematicalZFSet.IsOrdinalZFSet.rankβ€”le_antisymm_iff
subset_antisymm_iff
ZFSet.instReflSubset
ZFSet.instAntisymmSubset
rank_le_iff_subset
rank_le_iff_subset πŸ“–mathematicalZFSet.IsOrdinalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
ZFSet.rank
ZFSet
ZFSet.instHasSubset
β€”notMem_iff_subset
rank_lt_iff_mem
not_lt
rank_lt_iff_mem πŸ“–mathematicalZFSet.IsOrdinalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ZFSet.rank
ZFSet
ZFSet.instMembership
β€”not_subset_iff_mem
LE.le.not_gt
ZFSet.rank_mono
ZFSet.rank_lt_of_mem
subset_iff_eq_or_mem πŸ“–mathematicalZFSet.IsOrdinalZFSet
ZFSet.instHasSubset
ZFSet.instMembership
β€”Sym2.GameAdd.induction
ZFSet.mem_wf
subset_antisymm
ZFSet.instAntisymmSubset
WellFounded.has_min
Set.diff_nonempty
mem_trans
Sym2.GameAdd.fst_snd
mem
Set.notMem_of_mem_diff
subset_refl
ZFSet.instReflSubset
subset_of_mem
subset_of_mem πŸ“–mathematicalZFSet.IsOrdinal
ZFSet
ZFSet.instMembership
ZFSet.instHasSubsetβ€”ZFSet.IsTransitive.subset_of_mem
isTransitive
subset_total πŸ“–mathematicalZFSet.IsOrdinalZFSet
ZFSet.instHasSubset
β€”mem_or_subset
subset_of_mem
toZFSet_rank_eq πŸ“–mathematicalZFSet.IsOrdinalOrdinal.toZFSet
ZFSet.rank
β€”ZFSet.isOrdinal_toZFSet
Ordinal.rank_toZFSet
trichotomous πŸ“–mathematicalZFSet.IsOrdinalZFSet
ZFSet.instMembership
Subrel
β€”mem_trichotomous
mem

ZFSet.IsTransitive

Theorems

NameKindAssumesProvesValidatesDepends On
iUnion πŸ“–mathematicalZFSet.IsTransitiveZFSet.iUnionβ€”sUnion'
inter πŸ“–mathematicalZFSet.IsTransitiveZFSet
ZFSet.instInter
β€”ZFSet.mem_inter
mem_trans
mem_trans πŸ“–β€”ZFSet.IsTransitive
ZFSet
ZFSet.instMembership
β€”β€”ZFSet.isTransitive_iff_mem_trans
powerset πŸ“–mathematicalZFSet.IsTransitiveZFSet.powersetβ€”ZFSet.mem_powerset
subset_of_mem
sUnion πŸ“–mathematicalZFSet.IsTransitiveZFSet.sUnionβ€”ZFSet.mem_sUnion
ZFSet.mem_sUnion_of_mem
mem_trans
sUnion' πŸ“–mathematicalZFSet.IsTransitiveZFSet.sUnionβ€”ZFSet.mem_sUnion
ZFSet.mem_sUnion_of_mem
mem_trans
sUnion_subset πŸ“–mathematicalZFSet.IsTransitiveZFSet
ZFSet.instHasSubset
ZFSet.sUnion
β€”ZFSet.isTransitive_iff_sUnion_subset
subset_of_mem πŸ“–mathematicalZFSet.IsTransitive
ZFSet
ZFSet.instMembership
ZFSet.instHasSubsetβ€”β€”
subset_powerset πŸ“–mathematicalZFSet.IsTransitiveZFSet
ZFSet.instHasSubset
ZFSet.powerset
β€”ZFSet.isTransitive_iff_subset_powerset
union πŸ“–mathematicalZFSet.IsTransitiveZFSet
ZFSet.instUnion
β€”ZFSet.sUnion_pair
sUnion'
ZFSet.mem_pair

---

← Back to Index