Documentation Verification Report

PSet

πŸ“ Source: Mathlib/SetTheory/ZFC/PSet.lean

Statistics

MetricCount
DefinitionsPSet, Func, embed, empty, image, insert, instCoeSet, instEmptyCollection, instHasSSubset, instHasSubset, instInhabited, instInhabitedTypeInsert, instInsert, instMembership, instPreorder, instSep, instSingleton, instWellFoundedRelation, ofNat, omega, powerset, sUnion, sep, setoid, toSet, Β«term⋃₀_Β»
26
Theoremscomm, eq, euc, exists_left, exists_right, ext, refl, rfl, trans, congr_left, congr_right, ext, mk, congr_left, congr_right, empty_def, empty_subset, equiv_empty, equiv_iff, equiv_iff_mem, equiv_of_isEmpty, eta, func_mem, instIsEmptyTypeEmptyCollection, instIsNonstrictStrictOrderSubsetSSubset, instIsTransSubset, instIsWellFoundedMem, instLawfulSingleton, instReflSubset, le_def, lift_mem_embed, lt_def, mem_asymm, mem_def, mem_image, mem_insert, mem_insert_iff, mem_insert_of_mem, mem_irrefl, mem_of_subset, mem_pair, mem_powerset, mem_sUnion, mem_sep, mem_singleton, mem_toSet, mem_wf, mk_func, mk_type, nonempty_def, nonempty_of_mem, nonempty_of_nonempty_type, nonempty_toSet_iff, nonempty_type_iff_nonempty, notMem_empty, notMem_of_subset, not_nonempty_empty, not_subset_of_mem, subset_iff, toSet_empty, toSet_sUnion
61
Total87

PSet

Definitions

NameCategoryTheorems
Func πŸ“–CompOp
8 mathmath: Equiv.exists_left, mem_def, equiv_iff, func_mem, eta, ZFSet.sUnion_lem, Equiv.exists_right, mk_func
embed πŸ“–CompOp
1 mathmath: lift_mem_embed
empty πŸ“–CompOpβ€”
image πŸ“–CompOp
1 mathmath: mem_image
insert πŸ“–CompOpβ€”
instCoeSet πŸ“–CompOpβ€”
instEmptyCollection πŸ“–CompOp
9 mathmath: instIsEmptyTypeEmptyCollection, notMem_empty, instLawfulSingleton, rank_empty, toSet_empty, not_nonempty_empty, empty_subset, equiv_empty, empty_def
instHasSSubset πŸ“–CompOp
2 mathmath: instIsNonstrictStrictOrderSubsetSSubset, lt_def
instHasSubset πŸ“–CompOp
12 mathmath: instIsNonstrictStrictOrderSubsetSSubset, instReflSubset, Subset.congr_right, subset_iff, Subset.congr_left, Equiv.ext, mem_powerset, instIsTransSubset, ZFSet.subset_iff, not_subset_of_mem, empty_subset, le_def
instInhabited πŸ“–CompOpβ€”
instInhabitedTypeInsert πŸ“–CompOpβ€”
instInsert πŸ“–CompOp
7 mathmath: mem_insert_of_mem, rank_insert, instLawfulSingleton, mem_pair, mem_insert_iff, mem_insert, rank_pair
instMembership πŸ“–CompOp
27 mathmath: mem_wf, instIsWellFoundedMem, notMem_of_subset, mem_singleton, notMem_empty, rank_eq_wfRank, equiv_iff_mem, subset_iff, mem_sUnion, mem_def, nonempty_def, mem_powerset, Mem.mk, Ordinal.mem_toPSet_iff, mem_sep, Mem.congr_right, ZFSet.mk_mem_iff, func_mem, lift_mem_embed, mem_irrefl, lt_rank_iff, mem_pair, Mem.congr_left, mem_image, mem_toSet, mem_insert_iff, mem_insert
instPreorder πŸ“–CompOp
2 mathmath: lt_def, le_def
instSep πŸ“–CompOpβ€”
instSingleton πŸ“–CompOp
5 mathmath: mem_singleton, instLawfulSingleton, rank_singleton, mem_pair, rank_pair
instWellFoundedRelation πŸ“–CompOpβ€”
ofNat πŸ“–CompOpβ€”
omega πŸ“–CompOpβ€”
powerset πŸ“–CompOp
2 mathmath: mem_powerset, rank_powerset
sUnion πŸ“–CompOp
5 mathmath: le_succ_rank_sUnion, mem_sUnion, rank_sUnion_le, ZFSet.sUnion_lem, toSet_sUnion
sep πŸ“–CompOp
1 mathmath: mem_sep
setoid πŸ“–CompOp
2 mathmath: ZFSet.mk_eq, ZFSet.mk_out
toSet πŸ“–CompOp
5 mathmath: toSet_empty, Equiv.eq, toSet_sUnion, nonempty_toSet_iff, mem_toSet
Β«term⋃₀_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
empty_def πŸ“–mathematicalβ€”PSet
instEmptyCollection
β€”β€”
empty_subset πŸ“–mathematicalβ€”PSet
instHasSubset
instEmptyCollection
β€”β€”
equiv_empty πŸ“–mathematicalβ€”Equiv
PSet
instEmptyCollection
β€”equiv_of_isEmpty
instIsEmptyTypeEmptyCollection
equiv_iff πŸ“–mathematicalβ€”Equiv
Func
β€”β€”
equiv_iff_mem πŸ“–mathematicalβ€”Equiv
PSet
instMembership
β€”Mem.congr_right
Equiv.symm
equiv_of_isEmpty πŸ“–mathematicalβ€”Equivβ€”equiv_iff
eta πŸ“–mathematicalβ€”Type
Func
β€”β€”
func_mem πŸ“–mathematicalβ€”PSet
instMembership
Func
β€”β€”
instIsEmptyTypeEmptyCollection πŸ“–mathematicalβ€”IsEmpty
Type
PSet
instEmptyCollection
β€”β€”
instIsNonstrictStrictOrderSubsetSSubset πŸ“–mathematicalβ€”IsNonstrictStrictOrder
PSet
instHasSubset
instHasSSubset
β€”β€”
instIsTransSubset πŸ“–mathematicalβ€”IsTrans
PSet
instHasSubset
β€”Equiv.trans
instIsWellFoundedMem πŸ“–mathematicalβ€”IsWellFounded
PSet
instMembership
β€”mem_wf
instLawfulSingleton πŸ“–mathematicalβ€”PSet
instEmptyCollection
instInsert
instSingleton
β€”β€”
instReflSubset πŸ“–mathematicalβ€”PSet
instHasSubset
β€”Equiv.refl
le_def πŸ“–mathematicalβ€”PSet
Preorder.toLE
instPreorder
instHasSubset
β€”β€”
lift_mem_embed πŸ“–mathematicalβ€”PSet
instMembership
embed
Lift
β€”Equiv.rfl
lt_def πŸ“–mathematicalβ€”PSet
Preorder.toLT
instPreorder
instHasSSubset
β€”β€”
mem_asymm πŸ“–β€”PSet
instMembership
β€”β€”asymm_of
instAsymmOfIsWellFounded
instIsWellFoundedMem
mem_def πŸ“–mathematicalβ€”PSet
instMembership
Equiv
Func
β€”β€”
mem_image πŸ“–mathematicalEquivPSet
instMembership
image
β€”Equiv.trans
mem_insert πŸ“–mathematicalβ€”PSet
instMembership
instInsert
β€”mem_insert_iff
Equiv.rfl
mem_insert_iff πŸ“–mathematicalβ€”PSet
instMembership
instInsert
Equiv
β€”β€”
mem_insert_of_mem πŸ“–mathematicalPSet
instMembership
instInsertβ€”mem_insert_iff
mem_irrefl πŸ“–mathematicalβ€”PSet
instMembership
β€”irrefl_of
instAsymmOfIsWellFounded
instIsWellFoundedMem
mem_of_subset πŸ“–β€”PSet
instHasSubset
instMembership
β€”β€”Equiv.trans
mem_pair πŸ“–mathematicalβ€”PSet
instMembership
instInsert
instSingleton
Equiv
β€”β€”
mem_powerset πŸ“–mathematicalβ€”PSet
instMembership
powerset
instHasSubset
β€”Subset.congr_left
Equiv.refl
mem_sUnion πŸ“–mathematicalβ€”PSet
instMembership
sUnion
β€”Mem.congr_left
eta
Equiv.trans
mem_sep πŸ“–mathematicalβ€”PSet
instMembership
sep
β€”Equiv.symm
mem_singleton πŸ“–mathematicalβ€”PSet
instMembership
instSingleton
Equiv
β€”mem_insert_iff
notMem_empty
mem_toSet πŸ“–mathematicalβ€”PSet
Set
Set.instMembership
toSet
instMembership
β€”β€”
mem_wf πŸ“–mathematicalβ€”PSet
instMembership
β€”Equiv.refl
mk_func πŸ“–mathematicalβ€”Funcβ€”β€”
mk_type πŸ“–mathematicalβ€”Typeβ€”β€”
nonempty_def πŸ“–mathematicalβ€”Nonempty
PSet
instMembership
β€”β€”
nonempty_of_mem πŸ“–mathematicalPSet
instMembership
Nonemptyβ€”β€”
nonempty_of_nonempty_type πŸ“–mathematicalβ€”Nonemptyβ€”nonempty_type_iff_nonempty
nonempty_toSet_iff πŸ“–mathematicalβ€”Set.Nonempty
PSet
toSet
Nonempty
β€”β€”
nonempty_type_iff_nonempty πŸ“–mathematicalβ€”Type
Nonempty
β€”func_mem
notMem_empty πŸ“–mathematicalβ€”PSet
instMembership
instEmptyCollection
β€”IsEmpty.exists_iff
instIsEmptyTypeEmptyCollection
notMem_of_subset πŸ“–mathematicalPSet
instHasSubset
instMembershipβ€”not_subset_of_mem
not_nonempty_empty πŸ“–mathematicalβ€”Nonempty
PSet
instEmptyCollection
β€”toSet_empty
not_subset_of_mem πŸ“–mathematicalPSet
instMembership
instHasSubsetβ€”mem_irrefl
mem_of_subset
subset_iff πŸ“–mathematicalβ€”PSet
instHasSubset
instMembership
β€”mem_of_subset
toSet_empty πŸ“–mathematicalβ€”toSet
PSet
instEmptyCollection
Set
Set.instEmptyCollection
β€”β€”
toSet_sUnion πŸ“–mathematicalβ€”toSet
sUnion
Set.sUnion
PSet
Set.image
Set
β€”Set.ext
Set.sUnion_image
Set.iUnion_congr_Prop

PSet.Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
comm πŸ“–mathematicalβ€”PSet.Equivβ€”symm
eq πŸ“–mathematicalβ€”PSet.Equiv
PSet.toSet
β€”PSet.equiv_iff_mem
Set.ext_iff
euc πŸ“–β€”PSet.Equivβ€”β€”β€”
exists_left πŸ“–mathematicalPSet.EquivPSet.Funcβ€”PSet.equiv_iff
exists_right πŸ“–mathematicalPSet.EquivPSet.Funcβ€”PSet.equiv_iff
ext πŸ“–mathematicalβ€”PSet.Equiv
PSet
PSet.instHasSubset
β€”symm
refl πŸ“–mathematicalβ€”PSet.Equivβ€”β€”
rfl πŸ“–mathematicalβ€”PSet.Equivβ€”refl
trans πŸ“–β€”PSet.Equivβ€”β€”euc
symm

PSet.Mem

Theorems

NameKindAssumesProvesValidatesDepends On
congr_left πŸ“–mathematicalPSet.EquivPSet
PSet.instMembership
β€”PSet.Equiv.trans
PSet.Equiv.symm
congr_right πŸ“–mathematicalPSet.EquivPSet
PSet.instMembership
β€”PSet.Equiv.trans
PSet.Equiv.euc
ext πŸ“–mathematicalPSet
PSet.instMembership
PSet.Equivβ€”PSet.Equiv.symm
mk πŸ“–mathematicalβ€”PSet
PSet.instMembership
β€”PSet.Equiv.refl

PSet.Subset

Theorems

NameKindAssumesProvesValidatesDepends On
congr_left πŸ“–mathematicalPSet.EquivPSet
PSet.instHasSubset
β€”PSet.Equiv.trans
PSet.Equiv.symm
congr_right πŸ“–mathematicalPSet.EquivPSet
PSet.instHasSubset
β€”PSet.Equiv.trans
PSet.Equiv.symm

(root)

Definitions

NameCategoryTheorems
PSet πŸ“–CompData
50 mathmath: ZFSet.mk_eq, PSet.instIsEmptyTypeEmptyCollection, PSet.mem_wf, PSet.instIsWellFoundedMem, PSet.instIsNonstrictStrictOrderSubsetSSubset, PSet.instReflSubset, PSet.mem_singleton, PSet.notMem_empty, PSet.rank_eq_wfRank, ZFSet.mk_out, PSet.equiv_iff_mem, PSet.Subset.congr_right, PSet.rank_insert, PSet.subset_iff, PSet.mem_sUnion, PSet.Subset.congr_left, PSet.mem_def, PSet.Equiv.ext, PSet.instLawfulSingleton, PSet.nonempty_def, PSet.mem_powerset, PSet.Mem.mk, PSet.instIsTransSubset, Ordinal.mem_toPSet_iff, PSet.mem_sep, PSet.Mem.congr_right, PSet.rank_empty, ZFSet.mk_mem_iff, PSet.func_mem, ZFSet.subset_iff, PSet.lift_mem_embed, PSet.toSet_empty, PSet.mem_irrefl, PSet.rank_singleton, PSet.not_nonempty_empty, PSet.empty_subset, PSet.equiv_empty, PSet.lt_rank_iff, PSet.mem_pair, PSet.toSet_sUnion, PSet.lt_def, PSet.Mem.congr_left, PSet.le_def, PSet.nonempty_toSet_iff, PSet.mem_image, PSet.mem_toSet, PSet.mem_insert_iff, PSet.mem_insert, PSet.rank_pair, PSet.empty_def

---

← Back to Index