Documentation Verification Report

Rank

📁 Source: Mathlib/SetTheory/ZFC/Rank.lean

Statistics

MetricCount
Definitionsrank, rank
2
Theoremsle_succ_rank_sUnion, lt_rank_iff, rank_congr, rank_empty, rank_eq_wfRank, rank_insert, rank_le_iff, rank_lt_of_mem, rank_mono, rank_pair, rank_powerset, rank_sUnion_le, rank_singleton, le_succ_rank_sUnion, lt_rank_iff, rank_empty, rank_eq_wfRank, rank_iUnion, rank_insert, rank_le_iff, rank_lt_of_mem, rank_mk, rank_mono, rank_pair, rank_powerset, rank_range, rank_sUnion_le, rank_singleton, rank_union
29
Total31

PSet

Definitions

NameCategoryTheorems
rank 📖CompOp
15 mathmath: rank_le_iff, le_succ_rank_sUnion, rank_mono, rank_eq_wfRank, rank_lt_of_mem, ZFSet.rank_mk, rank_insert, rank_sUnion_le, Ordinal.rank_toPSet, rank_empty, rank_powerset, rank_singleton, lt_rank_iff, rank_congr, rank_pair

Theorems

NameKindAssumesProvesValidatesDepends On
le_succ_rank_sUnion 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
rank
Order.succ
Ordinal.instSuccOrder
sUnion
rank_powerset
rank_mono
subset_iff
mem_powerset
mem_sUnion
lt_rank_iff 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
rank
PSet
instMembership
Preorder.toLE
Mathlib.Tactic.Contrapose.contrapose_iff₁
Mathlib.Tactic.Push.not_and_eq
rank_le_iff
rank_congr 📖mathematicalEquivrankSet.ext
rank_empty 📖mathematicalrank
PSet
instEmptyCollection
Ordinal
Ordinal.zero
empty_def
ciSup_of_empty
PEmpty.instIsEmpty
bot_eq_zero'
Ordinal.canonicallyOrderedAdd
rank_eq_wfRank 📖mathematicalOrdinal.lift
rank
IsWellFounded.rank
PSet
instMembership
instIsWellFoundedMem
mem_wf
instIsWellFoundedMem
IsWellFounded.rank_eq
LE.le.antisymm
le_of_forall_lt
Ordinal.lt_lift_iff
small_subtype
UnivLE.small
UnivLE.self
Ordinal.instNoMaxOrder
lt_rank_iff
Ordinal.iSup_le
rank_lt_of_mem
rank_insert 📖mathematicalrank
PSet
instInsert
Ordinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
Order.succ
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
le_antisymm
rank_congr
Ordinal.instNoMaxOrder
rank_lt_of_mem
max_le
LT.lt.succ_le
mem_insert
rank_mono
subset_iff
mem_insert_of_mem
rank_le_iff 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
rank
Preorder.toLT
LT.lt.trans_le
rank_lt_of_mem
Ordinal.iSup_le
Order.succ_le_iff
Ordinal.instNoMaxOrder
rank_lt_of_mem 📖mathematicalPSet
instMembership
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
rank
rank_congr
Order.succ_le_iff
Ordinal.instNoMaxOrder
Ordinal.le_iSup
UnivLE.small
UnivLE.self
rank_mono 📖mathematicalPSet
instHasSubset
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
rank
rank_le_iff
rank_lt_of_mem
mem_of_subset
rank_pair 📖mathematicalrank
PSet
instInsert
instSingleton
Ordinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
Order.succ
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
rank_insert
rank_singleton
rank_powerset 📖mathematicalrank
powerset
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
le_antisymm
Ordinal.instNoMaxOrder
rank_mono
Order.succ_le_iff
rank_lt_of_mem
instReflSubset
rank_sUnion_le 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
rank
sUnion
rank_lt_of_mem
rank_singleton 📖mathematicalrank
PSet
instSingleton
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
rank_insert
rank_empty
sup_of_le_left
Ordinal.canonicallyOrderedAdd

ZFSet

Definitions

NameCategoryTheorems
rank 📖CompOp
27 mathmath: IsOrdinal.rank_le_iff_subset, subset_vonNeumann, rank_empty, lt_rank_iff, rank_mono, rank_mk, IsOrdinal.toZFSet_rank_eq, rank_powerset, subset_vonNeumann_self, rank_range, rank_insert, Ordinal.rank_toZFSet, mem_vonNeumann_succ, rank_le_iff, rank_iUnion, mem_vonNeumann, rank_eq_wfRank, rank_sUnion_le, rank_lt_of_mem, rank_pair, IsOrdinal.rank_lt_iff_mem, rank_singleton, rank_vonNeumann, Ordinal.toZFSetIso_symm_apply, rank_union, IsOrdinal.rank_inj, le_succ_rank_sUnion

Theorems

NameKindAssumesProvesValidatesDepends On
le_succ_rank_sUnion 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
rank
Order.succ
Ordinal.instSuccOrder
sUnion
rank_powerset
rank_mono
mem_powerset
mem_sUnion
lt_rank_iff 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
rank
ZFSet
instMembership
Preorder.toLE
Mathlib.Tactic.Contrapose.contrapose_iff₁
Mathlib.Tactic.Push.not_and_eq
rank_le_iff
rank_empty 📖mathematicalrank
ZFSet
instEmptyCollection
Ordinal
Ordinal.zero
PSet.rank_empty
rank_eq_wfRank 📖mathematicalOrdinal.lift
rank
IsWellFounded.rank
ZFSet
instMembership
instIsWellFoundedMem
inductionOn
instIsWellFoundedMem
IsWellFounded.rank_eq
LE.le.antisymm
le_of_forall_lt
Ordinal.lt_lift_iff
small_subtype
UnivLE.small
UnivLE.self
Ordinal.instNoMaxOrder
lt_rank_iff
Ordinal.iSup_le
rank_lt_of_mem
rank_iUnion 📖mathematicalrank
iUnion
iSup
Ordinal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
le_antisymm
LT.lt.trans_le
rank_lt_of_mem
Ordinal.le_iSup
Ordinal.iSup_le
rank_mono
subset_iUnion
rank_insert 📖mathematicalrank
ZFSet
instInsert
Ordinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
Order.succ
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
PSet.rank_insert
rank_le_iff 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
rank
Preorder.toLT
LT.lt.trans_le
rank_lt_of_mem
PSet.rank_le_iff
rank_lt_of_mem 📖mathematicalZFSet
instMembership
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
rank
PSet.rank_lt_of_mem
rank_mk 📖mathematicalrank
PSet.rank
rank_mono 📖mathematicalZFSet
instHasSubset
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
rank
rank_le_iff
rank_lt_of_mem
rank_pair 📖mathematicalrank
ZFSet
instInsert
instSingleton
Ordinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
Order.succ
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
rank_insert
rank_singleton
rank_powerset 📖mathematicalrank
powerset
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
PSet.rank_powerset
rank_range 📖mathematicalrank
range
iSup
Ordinal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
Order.succ
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
LE.le.antisymm'
Ordinal.iSup_le
Ordinal.instNoMaxOrder
Ordinal.le_iSup
rank_sUnion_le 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
rank
sUnion
rank_lt_of_mem
rank_singleton 📖mathematicalrank
ZFSet
instSingleton
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
rank_insert
rank_empty
sup_of_le_left
Ordinal.canonicallyOrderedAdd
rank_union 📖mathematicalrank
ZFSet
instUnion
Ordinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Ordinal.instConditionallyCompleteLinearOrderBot
le_antisymm
rank_lt_of_mem
max_le
rank_mono

---

← Back to Index