Documentation Verification Report

VonNeumann

📁 Source: Mathlib/SetTheory/ZFC/VonNeumann.lean

Statistics

MetricCount
DefinitionstermV_, vonNeumann
2
Theoremscard_le_card_vonNeumann, toZFSet_subset_vonNeumann, card_vonNeumann, exists_mem_vonNeumann, iUnion_vonNeumann, isTransitive_vonNeumann, mem_vonNeumann, mem_vonNeumann', mem_vonNeumann_of_subset, mem_vonNeumann_succ, rank_vonNeumann, subset_vonNeumann, subset_vonNeumann_self, vonNeumann_inj, vonNeumann_injective, vonNeumann_mem_of_lt, vonNeumann_mem_vonNeumann_iff, vonNeumann_of_isSuccPrelimit, vonNeumann_strictMono, vonNeumann_subset_of_le, vonNeumann_subset_vonNeumann_iff, vonNeumann_succ, vonNeumann_zero
23
Total25

Ordinal

Theorems

NameKindAssumesProvesValidatesDepends On
card_le_card_vonNeumann 📖mathematicalCardinal
Cardinal.instLE
card
ZFSet.card
ZFSet.vonNeumann
card_toZFSet
ZFSet.card_mono
toZFSet_subset_vonNeumann
toZFSet_subset_vonNeumann 📖mathematicalZFSet
ZFSet.instHasSubset
toZFSet
ZFSet.vonNeumann
rank_toZFSet

ZFSet

Definitions

NameCategoryTheorems
termV_ 📖CompOp
vonNeumann 📖CompOp
22 mathmath: subset_vonNeumann, vonNeumann_inj, vonNeumann_subset_vonNeumann_iff, vonNeumann_subset_of_le, exists_mem_vonNeumann, mem_vonNeumann', vonNeumann_mem_vonNeumann_iff, vonNeumann_strictMono, subset_vonNeumann_self, iUnion_vonNeumann, vonNeumann_injective, vonNeumann_zero, Ordinal.toZFSet_subset_vonNeumann, mem_vonNeumann_succ, mem_vonNeumann, Ordinal.card_le_card_vonNeumann, vonNeumann_mem_of_lt, vonNeumann_of_isSuccPrelimit, rank_vonNeumann, isTransitive_vonNeumann, vonNeumann_succ, card_vonNeumann

Theorems

NameKindAssumesProvesValidatesDepends On
card_vonNeumann 📖mathematicalcard
vonNeumann
Cardinal.preBeth
vonNeumann_zero
card_empty
Cardinal.preBeth_zero
vonNeumann_succ
Nat.instAtLeastTwoHAddOfNat
card_powerset
Cardinal.preBeth_succ
Cardinal.preBeth_limit
Order.IsSuccLimit.isSuccPrelimit
Ordinal.small_Iio
vonNeumann_of_isSuccPrelimit
LE.le.antisymm'
iSup_card_le_card_iUnion
Cardinal.lift_le
LE.le.trans
lift_card_iUnion_le_sum_card
Eq.le
Cardinal.sum_eq_lift_iSup_of_lift_mk_le_lift_iSup
Ordinal.mk_Iio_ordinal
Cardinal.lift_aleph0
Ordinal.aleph0_le_card
Ordinal.omega0_le_of_isSuccLimit
Cardinal.lift_lift
Eq.not_lt
Cardinal.card_ord
LE.le.trans_lt
Ordinal.card_le_card_vonNeumann
LT.lt.trans_le
Cardinal.cantor
le_ciSup
Cardinal.bddAbove_of_small
small_range
Order.IsSuccLimit.succ_lt
LE.le.trans_lt'
Cardinal.ord_card_le
Cardinal.ord_strictMono
exists_mem_vonNeumann 📖mathematicalZFSet
instMembership
vonNeumann
mem_vonNeumann_succ
iUnion_vonNeumann 📖mathematicalSet.iUnion
ZFSet
Ordinal
Class.ofSet
vonNeumann
Class.univ
Class.eq_univ_of_forall
Set.mem_iUnion
exists_mem_vonNeumann
isTransitive_vonNeumann 📖mathematicalIsTransitive
vonNeumann
Ordinal.small_Iio
vonNeumann.eq_1
IsTransitive.iUnion
IsTransitive.powerset
mem_vonNeumann 📖mathematicalZFSet
instMembership
vonNeumann
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
rank
LE.le.trans_lt
le_refl
mem_vonNeumann' 📖mathematicalZFSet
instMembership
vonNeumann
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
instHasSubset
Ordinal.small_Iio
vonNeumann.eq_1
mem_vonNeumann_of_subset 📖ZFSet
instHasSubset
instMembership
vonNeumann
mem_vonNeumann
LE.le.trans_lt
rank_mono
mem_vonNeumann_succ 📖mathematicalZFSet
instMembership
vonNeumann
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
rank
Ordinal.instNoMaxOrder
rank_vonNeumann 📖mathematicalrank
vonNeumann
le_antisymm
subset_vonNeumann
subset_refl
instReflSubset
le_of_forall_lt
rank_lt_of_mem
vonNeumann_mem_of_lt
subset_vonNeumann 📖mathematicalZFSet
instHasSubset
vonNeumann
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
rank
subset_vonNeumann_self 📖mathematicalZFSet
instHasSubset
vonNeumann
rank
vonNeumann_inj 📖mathematicalvonNeumannvonNeumann_injective
vonNeumann_injective 📖mathematicalOrdinal
ZFSet
vonNeumann
StrictMono.injective
vonNeumann_strictMono
vonNeumann_mem_of_lt 📖mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
ZFSet
instMembership
vonNeumann
Ordinal.small_Iio
vonNeumann.eq_1
subset_refl
instReflSubset
vonNeumann_mem_vonNeumann_iff 📖mathematicalZFSet
instMembership
vonNeumann
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
rank_vonNeumann
vonNeumann_of_isSuccPrelimit 📖mathematicalOrder.IsSuccPrelimit
Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
vonNeumann
iUnion
Set.Elem
Set.Iio
Ordinal.small_Iio
Set
Set.instMembership
ext
Ordinal.small_Iio
Order.IsSuccPrelimit.lt_iff_exists_lt
vonNeumann_strictMono 📖mathematicalStrictMono
Ordinal
ZFSet
PartialOrder.toPreorder
Ordinal.partialOrder
instPartialOrder
vonNeumann
strictMono_of_le_iff_le
vonNeumann_subset_of_le 📖mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
ZFSet
instHasSubset
vonNeumann
instReflSubset
isTransitive_vonNeumann
vonNeumann_mem_of_lt
LE.le.eq_or_lt
vonNeumann_subset_vonNeumann_iff 📖mathematicalZFSet
instHasSubset
vonNeumann
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
rank_vonNeumann
vonNeumann_succ 📖mathematicalvonNeumann
Order.succ
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.instSuccOrder
powerset
ext
mem_vonNeumann
mem_powerset
subset_vonNeumann
Order.lt_succ_iff
Ordinal.instNoMaxOrder
vonNeumann_zero 📖mathematicalvonNeumann
Ordinal
Ordinal.zero
ZFSet
instEmptyCollection
eq_empty
Ordinal.canonicallyOrderedAdd

---

← Back to Index