| Name | Category | Theorems |
assoc π | CompOp | 3 mathmath: CategoryTheory.Bicategory.mateEquiv_symm_apply', assoc_iso, CategoryTheory.Bicategory.mateEquiv_apply'
|
assoc' π | CompOp | 3 mathmath: CategoryTheory.Bicategory.mateEquiv_symm_apply', assoc'_iso, CategoryTheory.Bicategory.mateEquiv_apply'
|
iso π | CompOp | 11 mathmath: left'_iso, tensorRight_iso, left_iso, right'_iso, tensorRight'_iso, whiskerRight_iso, assoc_iso, assoc'_iso, right_iso, whiskerLeft_iso, refl_iso
|
left π | CompOp | 3 mathmath: left_iso, CategoryTheory.Bicategory.rightZigzag_idempotent_of_left_triangle, CategoryTheory.Bicategory.mateEquiv_apply'
|
left' π | CompOp | 2 mathmath: left'_iso, CategoryTheory.Bicategory.mateEquiv_symm_apply'
|
refl π | CompOp | 5 mathmath: CategoryTheory.Bicategory.mateEquiv_symm_apply', CategoryTheory.bicategoricalComp_refl, CategoryTheory.Bicategory.rightZigzag_idempotent_of_left_triangle, refl_iso, CategoryTheory.Bicategory.mateEquiv_apply'
|
right π | CompOp | 2 mathmath: CategoryTheory.Bicategory.mateEquiv_symm_apply', right_iso
|
right' π | CompOp | 3 mathmath: right'_iso, CategoryTheory.Bicategory.rightZigzag_idempotent_of_left_triangle, CategoryTheory.Bicategory.mateEquiv_apply'
|
tensorRight π | CompOp | 1 mathmath: tensorRight_iso
|
tensorRight' π | CompOp | 1 mathmath: tensorRight'_iso
|
whiskerLeft π | CompOp | 3 mathmath: CategoryTheory.Bicategory.mateEquiv_symm_apply', whiskerLeft_iso, CategoryTheory.Bicategory.mateEquiv_apply'
|
whiskerRight π | CompOp | 3 mathmath: CategoryTheory.Bicategory.mateEquiv_symm_apply', whiskerRight_iso, CategoryTheory.Bicategory.mateEquiv_apply'
|