Documentation Verification Report

BicategoricalComp

πŸ“ Source: Mathlib/Tactic/CategoryTheory/BicategoricalComp.lean

Statistics

MetricCount
DefinitionsBicategoricalCoherence, assoc, assoc', iso, left, left', refl, right, right', tensorRight, tensorRight', whiskerLeft, whiskerRight, Β«term_β‰ͺβŠ—β‰«_Β», Β«term_βŠ—β‰«_Β», Β«termβŠ—πŸ™Β», bicategoricalComp, bicategoricalIso, bicategoricalIsoComp
19
Theoremsassoc'_iso, assoc_iso, left'_iso, left_iso, refl_iso, right'_iso, right_iso, tensorRight'_iso, tensorRight_iso, whiskerLeft_iso, whiskerRight_iso, bicategoricalComp_refl
12
Total31

CategoryTheory

Definitions

NameCategoryTheorems
BicategoricalCoherence πŸ“–CompDataβ€”
bicategoricalComp πŸ“–CompOp
5 mathmath: Mathlib.Tactic.Bicategory.StructuralOfExpr_bicategoricalComp, Bicategory.mateEquiv_symm_apply', bicategoricalComp_refl, Bicategory.rightZigzag_idempotent_of_left_triangle, Bicategory.mateEquiv_apply'
bicategoricalIso πŸ“–CompOpβ€”
bicategoricalIsoComp πŸ“–CompOp
1 mathmath: Mathlib.Tactic.Bicategory.StructuralOfExpr_bicategoricalComp

Theorems

NameKindAssumesProvesValidatesDepends On
bicategoricalComp_refl πŸ“–mathematicalβ€”bicategoricalComp
BicategoricalCoherence.refl
CategoryStruct.comp
Quiver.Hom
CategoryStruct.toQuiver
Bicategory.toCategoryStruct
Category.toCategoryStruct
Bicategory.homCategory
β€”Category.id_comp

CategoryTheory.BicategoricalCoherence

Definitions

NameCategoryTheorems
assoc πŸ“–CompOp
3 mathmath: CategoryTheory.Bicategory.mateEquiv_symm_apply', assoc_iso, CategoryTheory.Bicategory.mateEquiv_apply'
assoc' πŸ“–CompOp
3 mathmath: CategoryTheory.Bicategory.mateEquiv_symm_apply', assoc'_iso, CategoryTheory.Bicategory.mateEquiv_apply'
iso πŸ“–CompOp
11 mathmath: left'_iso, tensorRight_iso, left_iso, right'_iso, tensorRight'_iso, whiskerRight_iso, assoc_iso, assoc'_iso, right_iso, whiskerLeft_iso, refl_iso
left πŸ“–CompOp
3 mathmath: left_iso, CategoryTheory.Bicategory.rightZigzag_idempotent_of_left_triangle, CategoryTheory.Bicategory.mateEquiv_apply'
left' πŸ“–CompOp
2 mathmath: left'_iso, CategoryTheory.Bicategory.mateEquiv_symm_apply'
refl πŸ“–CompOp
5 mathmath: CategoryTheory.Bicategory.mateEquiv_symm_apply', CategoryTheory.bicategoricalComp_refl, CategoryTheory.Bicategory.rightZigzag_idempotent_of_left_triangle, refl_iso, CategoryTheory.Bicategory.mateEquiv_apply'
right πŸ“–CompOp
2 mathmath: CategoryTheory.Bicategory.mateEquiv_symm_apply', right_iso
right' πŸ“–CompOp
3 mathmath: right'_iso, CategoryTheory.Bicategory.rightZigzag_idempotent_of_left_triangle, CategoryTheory.Bicategory.mateEquiv_apply'
tensorRight πŸ“–CompOp
1 mathmath: tensorRight_iso
tensorRight' πŸ“–CompOp
1 mathmath: tensorRight'_iso
whiskerLeft πŸ“–CompOp
3 mathmath: CategoryTheory.Bicategory.mateEquiv_symm_apply', whiskerLeft_iso, CategoryTheory.Bicategory.mateEquiv_apply'
whiskerRight πŸ“–CompOp
3 mathmath: CategoryTheory.Bicategory.mateEquiv_symm_apply', whiskerRight_iso, CategoryTheory.Bicategory.mateEquiv_apply'

Theorems

NameKindAssumesProvesValidatesDepends On
assoc'_iso πŸ“–mathematicalβ€”iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
assoc'
CategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.homCategory
CategoryTheory.Iso.symm
CategoryTheory.Bicategory.associator
β€”β€”
assoc_iso πŸ“–mathematicalβ€”iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
assoc
CategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.associator
β€”β€”
left'_iso πŸ“–mathematicalβ€”iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.CategoryStruct.id
left'
CategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.homCategory
CategoryTheory.Iso.symm
CategoryTheory.Bicategory.leftUnitor
β€”β€”
left_iso πŸ“–mathematicalβ€”iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.CategoryStruct.id
left
CategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.leftUnitor
β€”β€”
refl_iso πŸ“–mathematicalβ€”iso
refl
CategoryTheory.Iso.refl
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
β€”β€”
right'_iso πŸ“–mathematicalβ€”iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.CategoryStruct.id
right'
CategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.homCategory
CategoryTheory.Iso.symm
CategoryTheory.Bicategory.rightUnitor
β€”β€”
right_iso πŸ“–mathematicalβ€”iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.CategoryStruct.id
right
CategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.rightUnitor
β€”β€”
tensorRight'_iso πŸ“–mathematicalβ€”iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
tensorRight'
CategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Bicategory.whiskerLeftIso
CategoryTheory.Bicategory.rightUnitor
β€”β€”
tensorRight_iso πŸ“–mathematicalβ€”iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
tensorRight
CategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.symm
CategoryTheory.Bicategory.rightUnitor
CategoryTheory.Bicategory.whiskerLeftIso
β€”β€”
whiskerLeft_iso πŸ“–mathematicalβ€”iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
whiskerLeft
CategoryTheory.Bicategory.whiskerLeftIso
β€”β€”
whiskerRight_iso πŸ“–mathematicalβ€”iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
whiskerRight
CategoryTheory.Bicategory.whiskerRightIso
β€”β€”

CategoryTheory.Bicategory

Definitions

NameCategoryTheorems
Β«term_β‰ͺβŠ—β‰«_Β» πŸ“–CompOpβ€”
Β«term_βŠ—β‰«_Β» πŸ“–CompOpβ€”
Β«termβŠ—πŸ™Β» πŸ“–CompOpβ€”

---

← Back to Index