Documentation Verification Report

PureCoherence

📁 Source: Mathlib/Tactic/CategoryTheory/Bicategory/PureCoherence.lean

Statistics

MetricCount
DefinitionsinstMkEqOfNaturalityBicategoryM, instMonadNormalizeNaturalityBicategoryM, normalizeIsoComp, pureCoherence, tacticBicategory_coherence
5
Theoremsmk_eq_of_naturality, naturality_associator, naturality_comp, naturality_id, naturality_inv, naturality_leftUnitor, naturality_rightUnitor, naturality_whiskerLeft, naturality_whiskerRight, of_normalize_eq
10
Total15

Mathlib.Tactic.Bicategory

Definitions

NameCategoryTheorems
instMkEqOfNaturalityBicategoryM 📖CompOp
instMonadNormalizeNaturalityBicategoryM 📖CompOp
normalizeIsoComp 📖CompOp
5 mathmath: naturality_rightUnitor, naturality_whiskerRight, naturality_associator, naturality_whiskerLeft, naturality_leftUnitor
pureCoherence 📖CompOp
tacticBicategory_coherence 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
mk_eq_of_naturality 📖CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Iso.trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
CategoryTheory.Bicategory.whiskerLeftIso
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Bicategory.id_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
naturality_associator 📖mathematicalCategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.whiskerLeftIso
CategoryTheory.Bicategory.associator
normalizeIsoComp
CategoryTheory.Iso.ext
CategoryTheory.Bicategory.whiskerRight_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Bicategory.pentagon_hom_inv_inv_inv_inv_assoc
CategoryTheory.Bicategory.comp_whiskerRight
naturality_comp 📖CategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.whiskerLeftIso
CategoryTheory.Iso.ext
CategoryTheory.Bicategory.whiskerLeft_comp
CategoryTheory.Category.assoc
naturality_id 📖mathematicalCategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.whiskerLeftIso
CategoryTheory.Iso.refl
CategoryTheory.Iso.ext
CategoryTheory.Bicategory.whiskerLeft_id
CategoryTheory.Category.id_comp
naturality_inv 📖mathematicalCategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.whiskerLeftIso
CategoryTheory.Iso.symmCategoryTheory.Iso.ext
CategoryTheory.Bicategory.whiskerLeft_inv_hom_assoc
naturality_leftUnitor 📖mathematicalCategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
CategoryTheory.Bicategory.whiskerLeftIso
CategoryTheory.Bicategory.leftUnitor
normalizeIsoComp
CategoryTheory.Bicategory.rightUnitor
CategoryTheory.Iso.ext
CategoryTheory.Bicategory.triangle_assoc_comp_right_assoc
naturality_rightUnitor 📖mathematicalCategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
CategoryTheory.Bicategory.whiskerLeftIso
CategoryTheory.Bicategory.rightUnitor
normalizeIsoComp
CategoryTheory.Iso.ext
CategoryTheory.Bicategory.whiskerLeft_rightUnitor
CategoryTheory.Category.assoc
CategoryTheory.Bicategory.whiskerRight_id
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
naturality_whiskerLeft 📖mathematicalCategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.whiskerLeftIso
normalizeIsoCompCategoryTheory.Iso.ext
CategoryTheory.Bicategory.comp_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
naturality_whiskerRight 📖mathematicalCategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.whiskerLeftIso
CategoryTheory.Bicategory.whiskerRightIso
normalizeIsoComp
CategoryTheory.Iso.ext
CategoryTheory.Bicategory.comp_whiskerRight
CategoryTheory.Bicategory.whisker_assoc
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
of_normalize_eq 📖CategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
CategoryTheory.Bicategory.whiskerLeftIso
CategoryTheory.Iso.ext
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Bicategory.id_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc

---

← Back to Index