Documentation Verification Report

Normalize

πŸ“ Source: Mathlib/Tactic/CategoryTheory/Coherence/Normalize.lean

Statistics

MetricCount
Definitionsexpr, proof, instInhabitedResult, default, HorizontalComp, e, srcM, tgtM, MkEval, mkEvalComp, mkEvalHorizontalComp, mkEvalMonoidalComp, mkEvalOf, mkEvalWhiskerLeft, mkEvalWhiskerRight, toMkEvalComp, toMkEvalHorizontalComp, toMkEvalWhiskerLeft, toMkEvalWhiskerRight, MkEvalComp, mkEvalCompCons, mkEvalCompNilCons, mkEvalCompNilNil, MkEvalHorizontalComp, mkEvalHorizontalCompAux'OfWhisker, mkEvalHorizontalCompAux'Whisker, mkEvalHorizontalCompAuxCons, mkEvalHorizontalCompAuxOf, mkEvalHorizontalCompConsCons, mkEvalHorizontalCompConsNil, mkEvalHorizontalCompNilCons, mkEvalHorizontalCompNilNil, MkEvalWhiskerLeft, mkEvalWhiskerLeftComp, mkEvalWhiskerLeftId, mkEvalWhiskerLeftNil, mkEvalWhiskerLeftOfCons, MkEvalWhiskerRight, mkEvalWhiskerRightAuxCons, mkEvalWhiskerRightAuxOf, mkEvalWhiskerRightComp, mkEvalWhiskerRightConsOfOf, mkEvalWhiskerRightConsWhisker, mkEvalWhiskerRightId, mkEvalWhiskerRightNil, MonadHorizontalComp, hConsM, toMonadWhiskerRight, MonadNormalExpr, consM, nilM, toMonadWhiskerLeft, MonadWhiskerLeft, toMonadHorizontalComp, whiskerLeftM, MonadWhiskerRight, whiskerRightM, isStructural, NormalExpr, associatorInvM, associatorM, e, idM, leftUnitorInvM, leftUnitorM, ofAtomM, ofM, rightUnitorInvM, rightUnitorM, srcM, tgtM, toList, Structural, WhiskerLeft, e, srcM, tgtM, WhiskerRight, e, srcM, tgtM, eval, evalComp, evalCompNil, evalHorizontalComp, evalHorizontalCompAux, evalHorizontalCompAux', evalWhiskerLeft, evalWhiskerRight, evalWhiskerRightAux, instInhabitedHorizontalComp, default, instInhabitedNormalExpr, default, instInhabitedWhiskerLeft, default, instInhabitedWhiskerRight, default, traceProof
99
Theorems0
Total99

Mathlib.Tactic.BicategoryLike

Definitions

NameCategoryTheorems
HorizontalComp πŸ“–CompDataβ€”
MkEval πŸ“–CompDataβ€”
MkEvalComp πŸ“–CompDataβ€”
MkEvalHorizontalComp πŸ“–CompDataβ€”
MkEvalWhiskerLeft πŸ“–CompDataβ€”
MkEvalWhiskerRight πŸ“–CompDataβ€”
MonadHorizontalComp πŸ“–CompDataβ€”
MonadNormalExpr πŸ“–CompDataβ€”
MonadWhiskerLeft πŸ“–CompDataβ€”
MonadWhiskerRight πŸ“–CompDataβ€”
NormalExpr πŸ“–CompDataβ€”
Structural πŸ“–CompOpβ€”
WhiskerLeft πŸ“–CompDataβ€”
WhiskerRight πŸ“–CompDataβ€”
eval πŸ“–CompOpβ€”
evalComp πŸ“–CompOpβ€”
evalCompNil πŸ“–CompOpβ€”
evalHorizontalComp πŸ“–CompOpβ€”
evalHorizontalCompAux πŸ“–CompOpβ€”
evalHorizontalCompAux' πŸ“–CompOpβ€”
evalWhiskerLeft πŸ“–CompOpβ€”
evalWhiskerRight πŸ“–CompOpβ€”
evalWhiskerRightAux πŸ“–CompOpβ€”
instInhabitedHorizontalComp πŸ“–CompOpβ€”
instInhabitedNormalExpr πŸ“–CompOpβ€”
instInhabitedWhiskerLeft πŸ“–CompOpβ€”
instInhabitedWhiskerRight πŸ“–CompOpβ€”
traceProof πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.Eval

Definitions

NameCategoryTheorems
instInhabitedResult πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.Eval.Result

Definitions

NameCategoryTheorems
expr πŸ“–CompOpβ€”
proof πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.Eval.instInhabitedResult

Definitions

NameCategoryTheorems
default πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.HorizontalComp

Definitions

NameCategoryTheorems
e πŸ“–CompOpβ€”
srcM πŸ“–CompOpβ€”
tgtM πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.MkEval

Definitions

NameCategoryTheorems
mkEvalComp πŸ“–CompOpβ€”
mkEvalHorizontalComp πŸ“–CompOpβ€”
mkEvalMonoidalComp πŸ“–CompOpβ€”
mkEvalOf πŸ“–CompOpβ€”
mkEvalWhiskerLeft πŸ“–CompOpβ€”
mkEvalWhiskerRight πŸ“–CompOpβ€”
toMkEvalComp πŸ“–CompOpβ€”
toMkEvalHorizontalComp πŸ“–CompOpβ€”
toMkEvalWhiskerLeft πŸ“–CompOpβ€”
toMkEvalWhiskerRight πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.MkEvalComp

Definitions

NameCategoryTheorems
mkEvalCompCons πŸ“–CompOpβ€”
mkEvalCompNilCons πŸ“–CompOpβ€”
mkEvalCompNilNil πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.MkEvalHorizontalComp

Definitions

NameCategoryTheorems
mkEvalHorizontalCompAux'OfWhisker πŸ“–CompOpβ€”
mkEvalHorizontalCompAux'Whisker πŸ“–CompOpβ€”
mkEvalHorizontalCompAuxCons πŸ“–CompOpβ€”
mkEvalHorizontalCompAuxOf πŸ“–CompOpβ€”
mkEvalHorizontalCompConsCons πŸ“–CompOpβ€”
mkEvalHorizontalCompConsNil πŸ“–CompOpβ€”
mkEvalHorizontalCompNilCons πŸ“–CompOpβ€”
mkEvalHorizontalCompNilNil πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.MkEvalWhiskerLeft

Definitions

NameCategoryTheorems
mkEvalWhiskerLeftComp πŸ“–CompOpβ€”
mkEvalWhiskerLeftId πŸ“–CompOpβ€”
mkEvalWhiskerLeftNil πŸ“–CompOpβ€”
mkEvalWhiskerLeftOfCons πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.MkEvalWhiskerRight

Definitions

NameCategoryTheorems
mkEvalWhiskerRightAuxCons πŸ“–CompOpβ€”
mkEvalWhiskerRightAuxOf πŸ“–CompOpβ€”
mkEvalWhiskerRightComp πŸ“–CompOpβ€”
mkEvalWhiskerRightConsOfOf πŸ“–CompOpβ€”
mkEvalWhiskerRightConsWhisker πŸ“–CompOpβ€”
mkEvalWhiskerRightId πŸ“–CompOpβ€”
mkEvalWhiskerRightNil πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.MonadHorizontalComp

Definitions

NameCategoryTheorems
hConsM πŸ“–CompOpβ€”
toMonadWhiskerRight πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.MonadNormalExpr

Definitions

NameCategoryTheorems
consM πŸ“–CompOpβ€”
nilM πŸ“–CompOpβ€”
toMonadWhiskerLeft πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.MonadWhiskerLeft

Definitions

NameCategoryTheorems
toMonadHorizontalComp πŸ“–CompOpβ€”
whiskerLeftM πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.MonadWhiskerRight

Definitions

NameCategoryTheorems
whiskerRightM πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.Morβ‚‚Iso

Definitions

NameCategoryTheorems
isStructural πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.NormalExpr

Definitions

NameCategoryTheorems
associatorInvM πŸ“–CompOpβ€”
associatorM πŸ“–CompOpβ€”
e πŸ“–CompOpβ€”
idM πŸ“–CompOpβ€”
leftUnitorInvM πŸ“–CompOpβ€”
leftUnitorM πŸ“–CompOpβ€”
ofAtomM πŸ“–CompOpβ€”
ofM πŸ“–CompOpβ€”
rightUnitorInvM πŸ“–CompOpβ€”
rightUnitorM πŸ“–CompOpβ€”
srcM πŸ“–CompOpβ€”
tgtM πŸ“–CompOpβ€”
toList πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.WhiskerLeft

Definitions

NameCategoryTheorems
e πŸ“–CompOpβ€”
srcM πŸ“–CompOpβ€”
tgtM πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.WhiskerRight

Definitions

NameCategoryTheorems
e πŸ“–CompOpβ€”
srcM πŸ“–CompOpβ€”
tgtM πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.instInhabitedHorizontalComp

Definitions

NameCategoryTheorems
default πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.instInhabitedNormalExpr

Definitions

NameCategoryTheorems
default πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.instInhabitedWhiskerLeft

Definitions

NameCategoryTheorems
default πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryLike.instInhabitedWhiskerRight

Definitions

NameCategoryTheorems
default πŸ“–CompOpβ€”

---

← Back to Index