| Name | Category | Theorems |
assoc π | CompOp | 3 mathmath: CategoryTheory.BraidedCategory.yang_baxter', CategoryTheory.ExactPairing.evaluation_coevaluation'', assoc_iso
|
assoc' π | CompOp | 3 mathmath: CategoryTheory.BraidedCategory.yang_baxter', CategoryTheory.ExactPairing.coevaluation_evaluation'', assoc'_iso
|
iso π | CompOp | 13 mathmath: CategoryTheory.ExactPairing.coevaluation_evaluation'', assoc'_iso, left_iso, tensor_right_iso, right'_iso, whiskerRight_iso, CategoryTheory.ExactPairing.evaluation_coevaluation'', whiskerLeft_iso, refl_iso, left'_iso, assoc_iso, right_iso, tensor_right'_iso
|
left π | CompOp | 2 mathmath: left_iso, CategoryTheory.ExactPairing.evaluation_coevaluation''
|
left' π | CompOp | 2 mathmath: CategoryTheory.ExactPairing.coevaluation_evaluation'', left'_iso
|
refl π | CompOp | 5 mathmath: CategoryTheory.BraidedCategory.yang_baxter', CategoryTheory.ExactPairing.coevaluation_evaluation'', CategoryTheory.monoidalComp_refl, CategoryTheory.ExactPairing.evaluation_coevaluation'', refl_iso
|
right π | CompOp | 2 mathmath: CategoryTheory.ExactPairing.coevaluation_evaluation'', right_iso
|
right' π | CompOp | 2 mathmath: right'_iso, CategoryTheory.ExactPairing.evaluation_coevaluation''
|
tensor_right π | CompOp | 1 mathmath: tensor_right_iso
|
tensor_right' π | CompOp | 1 mathmath: tensor_right'_iso
|
whiskerLeft π | CompOp | 1 mathmath: whiskerLeft_iso
|
whiskerRight π | CompOp | 4 mathmath: CategoryTheory.BraidedCategory.yang_baxter', CategoryTheory.ExactPairing.coevaluation_evaluation'', whiskerRight_iso, CategoryTheory.ExactPairing.evaluation_coevaluation''
|