Documentation Verification Report

MonoidalComp

πŸ“ Source: Mathlib/Tactic/CategoryTheory/MonoidalComp.lean

Statistics

MetricCount
DefinitionsΒ«term_β‰ͺβŠ—β‰«_Β», Β«term_βŠ—β‰«_Β», Β«termβŠ—πŸ™Β», MonoidalCoherence, assoc, assoc', iso, left, left', refl, right, right', tensor_right, tensor_right', whiskerLeft, whiskerRight, monoidalComp, monoidalIso, monoidalIsoComp
19
Theoremsassoc'_iso, assoc_iso, left'_iso, left_iso, refl_iso, right'_iso, right_iso, tensor_right'_iso, tensor_right_iso, whiskerLeft_iso, whiskerRight_iso, monoidalComp_refl
12
Total31

CategoryTheory

Definitions

NameCategoryTheorems
MonoidalCoherence πŸ“–CompDataβ€”
monoidalComp πŸ“–CompOp
5 mathmath: BraidedCategory.yang_baxter', ExactPairing.coevaluation_evaluation'', monoidalComp_refl, ExactPairing.evaluation_coevaluation'', Mathlib.Tactic.Monoidal.StructuralOfExpr_monoidalComp
monoidalIso πŸ“–CompOpβ€”
monoidalIsoComp πŸ“–CompOp
1 mathmath: Mathlib.Tactic.Monoidal.StructuralOfExpr_monoidalComp

Theorems

NameKindAssumesProvesValidatesDepends On
monoidalComp_refl πŸ“–mathematicalβ€”monoidalComp
MonoidalCoherence.refl
CategoryStruct.comp
Category.toCategoryStruct
β€”Category.id_comp

CategoryTheory.MonoidalCategory

Definitions

NameCategoryTheorems
Β«term_β‰ͺβŠ—β‰«_Β» πŸ“–CompOpβ€”
Β«term_βŠ—β‰«_Β» πŸ“–CompOpβ€”
Β«termβŠ—πŸ™Β» πŸ“–CompOpβ€”

CategoryTheory.MonoidalCoherence

Definitions

NameCategoryTheorems
assoc πŸ“–CompOp
3 mathmath: CategoryTheory.BraidedCategory.yang_baxter', CategoryTheory.ExactPairing.evaluation_coevaluation'', assoc_iso
assoc' πŸ“–CompOp
3 mathmath: CategoryTheory.BraidedCategory.yang_baxter', CategoryTheory.ExactPairing.coevaluation_evaluation'', assoc'_iso
iso πŸ“–CompOp
13 mathmath: CategoryTheory.ExactPairing.coevaluation_evaluation'', assoc'_iso, left_iso, tensor_right_iso, right'_iso, whiskerRight_iso, CategoryTheory.ExactPairing.evaluation_coevaluation'', whiskerLeft_iso, refl_iso, left'_iso, assoc_iso, right_iso, tensor_right'_iso
left πŸ“–CompOp
2 mathmath: left_iso, CategoryTheory.ExactPairing.evaluation_coevaluation''
left' πŸ“–CompOp
2 mathmath: CategoryTheory.ExactPairing.coevaluation_evaluation'', left'_iso
refl πŸ“–CompOp
5 mathmath: CategoryTheory.BraidedCategory.yang_baxter', CategoryTheory.ExactPairing.coevaluation_evaluation'', CategoryTheory.monoidalComp_refl, CategoryTheory.ExactPairing.evaluation_coevaluation'', refl_iso
right πŸ“–CompOp
2 mathmath: CategoryTheory.ExactPairing.coevaluation_evaluation'', right_iso
right' πŸ“–CompOp
2 mathmath: right'_iso, CategoryTheory.ExactPairing.evaluation_coevaluation''
tensor_right πŸ“–CompOp
1 mathmath: tensor_right_iso
tensor_right' πŸ“–CompOp
1 mathmath: tensor_right'_iso
whiskerLeft πŸ“–CompOp
1 mathmath: whiskerLeft_iso
whiskerRight πŸ“–CompOp
4 mathmath: CategoryTheory.BraidedCategory.yang_baxter', CategoryTheory.ExactPairing.coevaluation_evaluation'', whiskerRight_iso, CategoryTheory.ExactPairing.evaluation_coevaluation''

Theorems

NameKindAssumesProvesValidatesDepends On
assoc'_iso πŸ“–mathematicalβ€”iso
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
assoc'
CategoryTheory.Iso.trans
CategoryTheory.Iso.symm
CategoryTheory.MonoidalCategoryStruct.associator
β€”β€”
assoc_iso πŸ“–mathematicalβ€”iso
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
assoc
CategoryTheory.Iso.trans
CategoryTheory.MonoidalCategoryStruct.associator
β€”β€”
left'_iso πŸ“–mathematicalβ€”iso
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
left'
CategoryTheory.Iso.trans
CategoryTheory.Iso.symm
CategoryTheory.MonoidalCategoryStruct.leftUnitor
β€”β€”
left_iso πŸ“–mathematicalβ€”iso
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
left
CategoryTheory.Iso.trans
CategoryTheory.MonoidalCategoryStruct.leftUnitor
β€”β€”
refl_iso πŸ“–mathematicalβ€”iso
refl
CategoryTheory.Iso.refl
β€”β€”
right'_iso πŸ“–mathematicalβ€”iso
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
right'
CategoryTheory.Iso.trans
CategoryTheory.Iso.symm
CategoryTheory.MonoidalCategoryStruct.rightUnitor
β€”β€”
right_iso πŸ“–mathematicalβ€”iso
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
right
CategoryTheory.Iso.trans
CategoryTheory.MonoidalCategoryStruct.rightUnitor
β€”β€”
tensor_right'_iso πŸ“–mathematicalβ€”iso
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
tensor_right'
CategoryTheory.Iso.trans
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.whiskerLeftIso
CategoryTheory.MonoidalCategoryStruct.rightUnitor
β€”β€”
tensor_right_iso πŸ“–mathematicalβ€”iso
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
tensor_right
CategoryTheory.Iso.trans
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.symm
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategory.whiskerLeftIso
β€”β€”
whiskerLeft_iso πŸ“–mathematicalβ€”iso
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
whiskerLeft
CategoryTheory.MonoidalCategory.whiskerLeftIso
β€”β€”
whiskerRight_iso πŸ“–mathematicalβ€”iso
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
whiskerRight
CategoryTheory.MonoidalCategory.whiskerRightIso
β€”β€”

---

← Back to Index