Documentation Verification Report

Normalize

πŸ“ Source: Mathlib/Tactic/CategoryTheory/Monoidal/Normalize.lean

Statistics

MetricCount
DefinitionsinstMkEvalCompMonoidalM, instMkEvalHorizontalCompMonoidalM, instMkEvalMonoidalM, instMkEvalWhiskerLeftMonoidalM, instMkEvalWhiskerRightMonoidalM, instMkMorβ‚‚MonoidalM_1, instMonadNormalExprMonoidalM
7
TheoremsevalComp_cons, evalComp_nil_cons, evalComp_nil_nil, evalHorizontalCompAux'_of_whisker, evalHorizontalCompAux'_whisker, evalHorizontalCompAux_cons, evalHorizontalCompAux_of, evalHorizontalComp_cons_cons, evalHorizontalComp_cons_nil, evalHorizontalComp_nil_cons, evalHorizontalComp_nil_nil, evalWhiskerLeft_comp, evalWhiskerLeft_id, evalWhiskerLeft_nil, evalWhiskerLeft_of_cons, evalWhiskerRightAux_cons, evalWhiskerRightAux_of, evalWhiskerRight_comp, evalWhiskerRight_cons_of, evalWhiskerRight_cons_of_of, evalWhiskerRight_cons_whisker, evalWhiskerRight_id, evalWhiskerRight_nil, eval_comp, eval_monoidalComp, eval_of, eval_tensorHom, eval_whiskerLeft, eval_whiskerRight
29
Total36

Mathlib.Tactic.Monoidal

Definitions

NameCategoryTheorems
instMkEvalCompMonoidalM πŸ“–CompOpβ€”
instMkEvalHorizontalCompMonoidalM πŸ“–CompOpβ€”
instMkEvalMonoidalM πŸ“–CompOpβ€”
instMkEvalWhiskerLeftMonoidalM πŸ“–CompOpβ€”
instMkEvalWhiskerRightMonoidalM πŸ“–CompOpβ€”
instMkMorβ‚‚MonoidalM_1 πŸ“–CompOpβ€”
instMonadNormalExprMonoidalM πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
evalComp_cons πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.homβ€”CategoryTheory.Category.assoc
evalComp_nil_cons πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.trans
β€”CategoryTheory.Category.assoc
evalComp_nil_nil πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Iso.trans
β€”β€”
evalHorizontalCompAux'_of_whisker πŸ“–mathematicalCategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.refl
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.whiskerLeftβ€”CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.MonoidalCategory.whiskerRight_tensor
CategoryTheory.Category.assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.MonoidalCategory.tensor_whiskerLeft
CategoryTheory.Iso.inv_hom_id
evalHorizontalCompAux'_whisker πŸ“–β€”CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Iso.hom
β€”β€”CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.MonoidalCategory.whisker_assoc
CategoryTheory.MonoidalCategory.tensor_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_comp
evalHorizontalCompAux_cons πŸ“–β€”CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.refl
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
β€”β€”CategoryTheory.MonoidalCategory.associator_conjugation
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
evalHorizontalCompAux_of πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.hom
CategoryTheory.Iso.refl
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
evalHorizontalComp_cons_cons πŸ“–β€”CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.tensorIso
β€”β€”CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom
evalHorizontalComp_cons_nil πŸ“–mathematicalCategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.refl
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.tensorIso
CategoryTheory.MonoidalCategoryStruct.tensorHomβ€”CategoryTheory.MonoidalCategory.tensorHom_def'
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
evalHorizontalComp_nil_cons πŸ“–mathematicalCategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.refl
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.tensorIso
CategoryTheory.MonoidalCategoryStruct.tensorHomβ€”CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
evalHorizontalComp_nil_nil πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.tensorIso
β€”β€”
evalWhiskerLeft_comp πŸ“–β€”CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Iso.hom
β€”β€”CategoryTheory.MonoidalCategory.tensor_whiskerLeft
evalWhiskerLeft_id πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.whiskerLeftβ€”CategoryTheory.MonoidalCategory.id_whiskerLeft
evalWhiskerLeft_nil πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.whiskerLeftIso
β€”β€”
evalWhiskerLeft_of_cons πŸ“–mathematicalCategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.whiskerLeftIso
β€”CategoryTheory.MonoidalCategory.whiskerLeft_comp
evalWhiskerRightAux_cons πŸ“–β€”CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.refl
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
β€”β€”CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.MonoidalCategory.whisker_assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.MonoidalCategory.whiskerRight_tensor
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
evalWhiskerRightAux_of πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.hom
CategoryTheory.Iso.refl
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
evalWhiskerRight_comp πŸ“–β€”CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Iso.inv
β€”β€”CategoryTheory.MonoidalCategory.whiskerRight_tensor
evalWhiskerRight_cons_of πŸ“–β€”CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.whiskerRightIso
β€”β€”CategoryTheory.MonoidalCategory.comp_whiskerRight
evalWhiskerRight_cons_of_of πŸ“–β€”CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.whiskerRightIso
β€”β€”CategoryTheory.MonoidalCategory.comp_whiskerRight
evalWhiskerRight_cons_whisker πŸ“–β€”CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.refl
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.whiskerRightIso
β€”β€”CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.MonoidalCategory.whisker_assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
evalWhiskerRight_id πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.whiskerRightβ€”CategoryTheory.MonoidalCategory.whiskerRight_id
evalWhiskerRight_nil πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.whiskerRightIso
β€”β€”
eval_comp πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”β€”
eval_monoidalComp πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
β€”β€”β€”
eval_of πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.refl
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
eval_tensorHom πŸ“–β€”CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”β€”
eval_whiskerLeft πŸ“–β€”CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”β€”
eval_whiskerRight πŸ“–β€”CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”β€”

---

← Back to Index