Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/Tactic/ComputeAsymptotics/Lemmas.lean

Statistics

MetricCount
Definitions0
TheoremsisBigOWith_of_tendsto_bot, isBigOWith_of_tendsto_top, isBigO_of_div_tendsto_atBot, isBigO_of_div_tendsto_atTop, tendsto_nhdsGT_of_tendsto_atTop, tendsto_nhdsLT_of_tendsto_atTop, tendsto_nhdsNE_of_tendsto_atTop, tendsto_nhdsNE_of_tendsto_atTop_nhds_of_eq
8
Total8

Tactic.ComputeAsymptotics

Theorems

NameKindAssumesProvesValidatesDepends On
isBigOWith_of_tendsto_bot πŸ“–mathematicalFilter.Tendsto
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Filter.atBot
Real.instPreorder
Real.instLT
Real.instZero
Asymptotics.IsBigOWith
Real.norm
β€”Asymptotics.IsLittleO.forall_isBigOWith
Asymptotics.IsLittleO.of_tendsto_div_atBot
Real.instIsStrictOrderedRing
instOrderTopologyReal
isBigOWith_of_tendsto_top πŸ“–mathematicalFilter.Tendsto
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Filter.atTop
Real.instPreorder
Real.instLT
Real.instZero
Asymptotics.IsBigOWith
Real.norm
β€”Asymptotics.IsLittleO.forall_isBigOWith
Asymptotics.IsLittleO.of_tendsto_div_atTop
Real.instIsStrictOrderedRing
instOrderTopologyReal
isBigO_of_div_tendsto_atBot πŸ“–mathematicalFilter.Tendsto
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Filter.atBot
Real.instPreorder
Asymptotics.IsBigO
Real.norm
β€”Asymptotics.IsLittleO.isBigO
Asymptotics.IsLittleO.of_tendsto_div_atBot
Real.instIsStrictOrderedRing
instOrderTopologyReal
isBigO_of_div_tendsto_atTop πŸ“–mathematicalFilter.Tendsto
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Filter.atTop
Real.instPreorder
Asymptotics.IsBigO
Real.norm
β€”Asymptotics.IsLittleO.isBigO
Asymptotics.IsLittleO.of_tendsto_div_atTop
Real.instIsStrictOrderedRing
instOrderTopologyReal
tendsto_nhdsGT_of_tendsto_atTop πŸ“–mathematicalFilter.Tendsto
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhdsWithin
Set.Ioi
β€”inv_atTopβ‚€
Filter.map_add_left_nhdsGT
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
IsStrictOrderedRing.toIsTopologicalDivisionRing
add_zero
tendsto_nhdsLT_of_tendsto_atTop πŸ“–mathematicalFilter.Tendsto
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhdsWithin
Set.Iio
β€”inv_atTopβ‚€
Filter.neg_nhdsGT
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsTopologicalRing.toContinuousNeg
IsTopologicalDivisionRing.toIsTopologicalRing
IsStrictOrderedRing.toIsTopologicalDivisionRing
neg_zero
Filter.map_add_left_nhdsLT
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
add_zero
AddGroupWithOne.sub_eq_add_neg
tendsto_nhdsNE_of_tendsto_atTop πŸ“–mathematicalFilter.Tendsto
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”Filter.map_sup
tendsto_nhdsLT_of_tendsto_atTop
tendsto_nhdsGT_of_tendsto_atTop
tendsto_nhdsNE_of_tendsto_atTop_nhds_of_eq πŸ“–mathematicalFilter.Tendsto
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”tendsto_nhdsNE_of_tendsto_atTop

---

← Back to Index