Documentation Verification Report

Corecursion

πŸ“ Source: Mathlib/Tactic/ComputeAsymptotics/Multiseries/Corecursion.lean

Statistics

MetricCount
DefinitionsFriendlyOperation, FriendlyOperationClass, gcorec, instMetricSpaceSeq, instMetricSpaceStream'
5
Theoremscomp, const, dist_le, exists_fixed_point, id, ite, comp, friend, dist_le_one, dist_cons_cons, dist_cons_cons_eq_one, dist_cons_nil, dist_eq_half_of_head, dist_eq_one_of_head, dist_eq_two_inv_pow, dist_le_one, dist_nil_cons, exists_fixed_point_of_contractible, gcorec_nil, gcorec_some, instBoundedSpaceSeq, instBoundedSpaceStream', instCompleteSpaceSeq, instCompleteSpaceStream'
24
Total29

Tactic.ComputeAsymptotics.Seq

Definitions

NameCategoryTheorems
FriendlyOperation πŸ“–MathDef
3 mathmath: FriendlyOperation.const, FriendlyOperation.id, FriendlyOperationClass.friend
FriendlyOperationClass πŸ“–CompData
1 mathmath: FriendlyOperationClass.comp
gcorec πŸ“–CompOpβ€”
instMetricSpaceSeq πŸ“–CompOp
11 mathmath: dist_cons_nil, instBoundedSpaceSeq, dist_cons_cons_eq_one, dist_eq_one_of_head, dist_cons_cons, dist_eq_two_inv_pow, dist_nil_cons, instCompleteSpaceSeq, FriendlyOperation.dist_le, dist_eq_half_of_head, dist_le_one
instMetricSpaceStream' πŸ“–CompOp
3 mathmath: Stream'.dist_le_one, instCompleteSpaceStream', instBoundedSpaceStream'

Theorems

NameKindAssumesProvesValidatesDepends On
dist_cons_cons πŸ“–mathematicalβ€”Dist.dist
Stream'.Seq
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
instMetricSpaceSeq
Stream'.Seq.cons
Real
Real.instMul
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
dist_self
MulZeroClass.mul_zero
Subtype.dist_eq
PiNat.dist_eq_of_ne
Subtype.coe_ne_coe
one_div
PiNat.firstDiff_def
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Subtype.val_injective
Nat.find_comp_succ
dist_cons_cons_eq_one πŸ“–mathematicalβ€”Dist.dist
Stream'.Seq
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
instMetricSpaceSeq
Stream'.Seq.cons
Real
Real.instOne
β€”dist_eq_one_of_head
Stream'.Seq.head_cons
dist_cons_nil πŸ“–mathematicalβ€”Dist.dist
Stream'.Seq
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
instMetricSpaceSeq
Stream'.Seq.cons
Stream'.Seq.nil
Real
Real.instOne
β€”dist_eq_one_of_head
Stream'.Seq.head_cons
dist_eq_half_of_head πŸ“–mathematicalStream'.Seq.headDist.dist
Stream'.Seq
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
instMetricSpaceSeq
Real
Real.instMul
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Stream'.Seq.tail
β€”Nat.instAtLeastTwoHAddOfNat
dist_self
MulZeroClass.mul_zero
Stream'.Seq.head_cons
dist_cons_cons
dist_eq_one_of_head πŸ“–mathematicalβ€”Dist.dist
Stream'.Seq
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
instMetricSpaceSeq
Real
Real.instOne
β€”Subtype.dist_eq
Nat.instAtLeastTwoHAddOfNat
PiNat.dist_eq_of_ne
Subtype.coe_ne_coe
Mathlib.Tactic.Contrapose.contraposeβ‚„
PiNat.firstDiff_def
pow_zero
dist_eq_two_inv_pow πŸ“–mathematicalβ€”Dist.dist
Stream'.Seq
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
instMetricSpaceSeq
Real
Monoid.toNatPow
Real.instMonoid
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Subtype.dist_eq
PiNat.dist_eq_of_ne
Subtype.coe_ne_coe
one_div
inv_pow
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
Real.instIsOrderedRing
Real.instNontrivial
IsStrictOrderedRing.toCharZero
dist_le_one πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
Stream'.Seq
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
instMetricSpaceSeq
Real.instOne
β€”PiNat.dist_le_one
dist_nil_cons πŸ“–mathematicalβ€”Dist.dist
Stream'.Seq
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
instMetricSpaceSeq
Stream'.Seq.nil
Stream'.Seq.cons
Real
Real.instOne
β€”dist_comm
dist_cons_nil
exists_fixed_point_of_contractible πŸ“–mathematicalLipschitzWith
UniformFun
Stream'.Seq
UniformFun.instPseudoEMetricSpace
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
instMetricSpaceSeq
NNReal
NNReal.instInv
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
Nat.instAtLeastTwoHAddOfNat
Function.IsFixedPtβ€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNNRat_lt_true
NNReal.instIsStrictOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_one
instBoundedSpaceSeq
instNonemptyUniformFun
UniformFun.instCompleteSpace
instCompleteSpaceSeq
ContractingWith.fixedPoint_isFixedPt
gcorec_nil πŸ“–mathematicalβ€”Stream'.Seq.nilβ€”FriendlyOperation.exists_fixed_point
gcorec_some πŸ“–mathematicalβ€”Stream'.Seq.consβ€”FriendlyOperation.exists_fixed_point
instBoundedSpaceSeq πŸ“–mathematicalβ€”BoundedSpace
Stream'.Seq
PseudoMetricSpace.toBornology
MetricSpace.toPseudoMetricSpace
instMetricSpaceSeq
β€”instBoundedSpaceSubtype
instBoundedSpaceStream'
instBoundedSpaceStream' πŸ“–mathematicalβ€”BoundedSpace
Stream'
PseudoMetricSpace.toBornology
MetricSpace.toPseudoMetricSpace
instMetricSpaceStream'
β€”PiNat.boundedSpace
discreteTopology_bot
instCompleteSpaceSeq πŸ“–mathematicalβ€”CompleteSpace
Stream'.Seq
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpaceSeq
β€”isClosed_iff_clusterPt
Nat.instAtLeastTwoHAddOfNat
clusterPt_principal_iff
Metric.ball_mem_nhds
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
PiNat.apply_eq_of_dist_lt
le_refl
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
IsClosed.completeSpace_coe
instCompleteSpaceStream'
instCompleteSpaceStream' πŸ“–mathematicalβ€”CompleteSpace
Stream'
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpaceStream'
β€”PiNat.completeSpace
discreteTopology_bot

Tactic.ComputeAsymptotics.Seq.FriendlyOperation

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalTactic.ComputeAsymptotics.Seq.FriendlyOperationStream'.Seqβ€”eq_1
mul_one
LipschitzWith.comp
const πŸ“–mathematicalβ€”Tactic.ComputeAsymptotics.Seq.FriendlyOperationβ€”dist_self
one_mul
dist_le πŸ“–mathematicalTactic.ComputeAsymptotics.Seq.FriendlyOperationReal
Real.instLE
Dist.dist
Stream'.Seq
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Tactic.ComputeAsymptotics.Seq.instMetricSpaceSeq
β€”one_mul
lipschitzWith_iff_dist_le_mul
eq_1
exists_fixed_point πŸ“–mathematicalβ€”Stream'.Seq
Stream'.Seq.nil
Stream'.Seq.cons
β€”Nat.instAtLeastTwoHAddOfNat
Tactic.ComputeAsymptotics.Seq.instBoundedSpaceSeq
lipschitzWith_iff_dist_le_mul
UniformFun.dist_le
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
Mathlib.Meta.Positivity.nnreal_coe_pos
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
NNReal.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
dist_nonneg
dist_self
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instNontrivial
Tactic.ComputeAsymptotics.Seq.dist_cons_cons
Tactic.ComputeAsymptotics.Seq.FriendlyOperationClass.friend
one_mul
eq_1
le_ciSup
Metric.boundedSpace_iff
Tactic.ComputeAsymptotics.Seq.exists_fixed_point_of_contractible
id πŸ“–mathematicalβ€”Tactic.ComputeAsymptotics.Seq.FriendlyOperation
Stream'.Seq
β€”LipschitzWith.id
ite πŸ“–mathematicalTactic.ComputeAsymptotics.Seq.FriendlyOperationStream'.Seq
Stream'.Seq.head
β€”eq_1
lipschitzWith_iff_dist_le_mul
NNReal.coe_one
Tactic.ComputeAsymptotics.Seq.dist_eq_one_of_head
mul_one

Tactic.ComputeAsymptotics.Seq.FriendlyOperationClass

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”Tactic.ComputeAsymptotics.Seq.FriendlyOperationClassβ€”β€”
friend πŸ“–mathematicalβ€”Tactic.ComputeAsymptotics.Seq.FriendlyOperationβ€”β€”

Tactic.ComputeAsymptotics.Seq.Stream'

Theorems

NameKindAssumesProvesValidatesDepends On
dist_le_one πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
Stream'
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Tactic.ComputeAsymptotics.Seq.instMetricSpaceStream'
Real.instOne
β€”dist_self
Real.instZeroLEOneClass
Nat.instAtLeastTwoHAddOfNat
PiNat.dist_eq_of_ne
pow_le_oneβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
zero_le_one
zero_le_two
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
div_le_one_of_leβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Mathlib.Meta.NormNum.isNat_le_true
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo

---

← Back to Index