Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/Tactic/FieldSimp/Lemmas.lean

Statistics

MetricCount
DefinitionsNF, cons, eval, instInv, instPowInt, instPowNat, Β«term_::α΅£_Β», div, expr, inv, mkEqMul, mul, mulRight, neg, pow, zpow, zpow'
17
Theoremsatom_eq_eval, cons_eq_div_of_eq_div, cons_eq_div_of_eq_div', cons_ne_zero, cons_pos, cons_zero_eq_div_of_eq_div, div_eq_eval, div_eq_eval₁, div_eq_evalβ‚‚, div_eq_eval₃, eval_cons, eval_cons_eq_eval_of_eq_of_eq, eval_cons_mul_eval, eval_cons_mul_eval_cons_neg, eval_cons_of_pow_eq_zero, eval_inv, eval_mul_eval_cons, eval_mul_eval_cons_zero, eval_pow, eval_zpow', inv_eq_eval, mul_eq_eval, mul_eq_eval₁, mul_eq_evalβ‚‚, mul_eq_eval₃, one_div_eq_eval, one_eq_eval, pow_apply, pow_eq_eval, zpow_apply, zpow_eq_eval, eq_div_of_eq_one_of_subst, eq_div_of_eq_one_of_subst', eq_div_of_subst, eq_eq_cancel_eq, eq_mul_of_eq_eq_eq_mul, le_eq_cancel_le, list_prod_zpow', lt_eq_cancel_lt, mul_zpow', one_zpow', subst_add, subst_sub, zero_zpow', zpow'_add, zpow'_eq_zero_iff, zpow'_mul, zpow'_neg, zpow'_ofNat, zpow'_of_ne_zero_left, zpow'_of_ne_zero_right, zpow'_one, zpow'_zero_eq_div, zpow'_zero_of_ne_zero
54
Total71

Mathlib.Tactic.FieldSimp

Definitions

NameCategoryTheorems
NF πŸ“–CompOp
9 mathmath: NF.eval_inv, NF.one_div_eq_eval, NF.zpow_apply, NF.pow_eq_eval, NF.zpow_eq_eval, NF.eval_zpow', NF.eval_pow, NF.pow_apply, NF.inv_eq_eval
zpow' πŸ“–CompOp
17 mathmath: zpow'_one, one_zpow', NF.eval_zpow', NF.eval_pow, zpow'_of_ne_zero_right, list_prod_zpow', zpow'_of_ne_zero_left, zpow'_eq_zero_iff, zpow'_mul, zpow'_neg, zpow'_zero_eq_div, zpow'_ofNat, zpow'_add, zpow'_zero_of_ne_zero, NF.eval_cons, zero_zpow', mul_zpow'

Theorems

NameKindAssumesProvesValidatesDepends On
eq_div_of_eq_one_of_subst πŸ“–β€”DivInvMonoid.toDiv
DivInvOneMonoid.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
β€”β€”div_one
eq_div_of_eq_one_of_subst' πŸ“–mathematicalDivInvMonoid.toDiv
DivInvOneMonoid.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
InvOneClass.toInvβ€”one_div
eq_div_of_subst πŸ“–β€”β€”β€”β€”β€”
eq_eq_cancel_eq πŸ“–β€”MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”β€”mul_right_inj'
eq_mul_of_eq_eq_eq_mul πŸ“–β€”β€”β€”β€”β€”
le_eq_cancel_le πŸ“–mathematicalMulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
Preorder.toLEβ€”mul_le_mul_iff_rightβ‚€
list_prod_zpow' πŸ“–mathematicalβ€”zpow'
CommGroupWithZero.toGroupWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
β€”one_zpow'
mul_zpow'
map_list_prod
MonoidHom.instMonoidHomClass
lt_eq_cancel_lt πŸ“–β€”MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
β€”β€”mul_lt_mul_iff_of_pos_left
mul_zpow' πŸ“–mathematicalβ€”zpow'
CommGroupWithZero.toGroupWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
β€”MulZeroClass.zero_mul
zero_zpow'
MulZeroClass.mul_zero
GroupWithZero.noZeroDivisors
mul_zpow
one_zpow' πŸ“–mathematicalβ€”zpow'
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
β€”NeZero.one
GroupWithZero.toNontrivial
one_zpow
subst_add πŸ“–β€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toAdd
β€”β€”mul_add
Distrib.leftDistribClass
subst_sub πŸ“–β€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”β€”mul_sub
zero_zpow' πŸ“–mathematicalβ€”zpow'
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
β€”zero_zpow
zpow'_add πŸ“–mathematicalβ€”zpow'
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
β€”mul_ite
MulZeroClass.mul_zero
ite_mul
MulZeroClass.zero_mul
add_zero
zero_zpow
zpow_addβ‚€
zpow'_eq_zero_iff πŸ“–mathematicalβ€”zpow'
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
β€”eq_or_ne
zpow_zero
NeZero.one
GroupWithZero.toNontrivial
zpow_eq_zero_iff
zpow'_mul πŸ“–mathematicalβ€”zpow'β€”zero_zpow'
MulZeroClass.mul_zero
zpow_zero
MulZeroClass.zero_mul
NeZero.one
GroupWithZero.toNontrivial
one_zpow
IsDomain.to_noZeroDivisors
Int.instIsDomain
zpow_mul
zpow'_neg πŸ“–mathematicalβ€”zpow'
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
β€”zpow_neg
inv_zero
zpow_zero
inv_one
NeZero.one
GroupWithZero.toNontrivial
zpow'_ofNat πŸ“–mathematicalβ€”zpow'
Monoid.toNatPow
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
β€”zpow'_of_ne_zero_right
Nat.cast_zero
Int.instCharZero
zpow_natCast
zpow'_of_ne_zero_left πŸ“–mathematicalβ€”zpow'
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
β€”β€”
zpow'_of_ne_zero_right πŸ“–mathematicalβ€”zpow'
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
β€”β€”
zpow'_one πŸ“–mathematicalβ€”zpow'β€”zpow_one
zpow'_zero_eq_div πŸ“–mathematicalβ€”zpow'
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
β€”zpow_zero
div_zero
div_self
zpow'_zero_of_ne_zero πŸ“–mathematicalβ€”zpow'
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
β€”zpow_zero

Mathlib.Tactic.FieldSimp.NF

Definitions

NameCategoryTheorems
cons πŸ“–CompOp
11 mathmath: eval_cons_mul_eval, cons_pos, div_eq_evalβ‚‚, eval_mul_eval_cons, cons_eq_div_of_eq_div', cons_eq_div_of_eq_div, eval_cons_mul_eval_cons_neg, mul_eq_evalβ‚‚, eval_cons, cons_zero_eq_div_of_eq_div, eval_cons_of_pow_eq_zero
eval πŸ“–CompOp
8 mathmath: eval_inv, one_div_eq_eval, eval_zpow', eval_pow, atom_eq_eval, one_eq_eval, eval_cons, eval_cons_of_pow_eq_zero
instInv πŸ“–CompOp
3 mathmath: eval_inv, one_div_eq_eval, inv_eq_eval
instPowInt πŸ“–CompOp
3 mathmath: zpow_apply, zpow_eq_eval, eval_zpow'
instPowNat πŸ“–CompOp
3 mathmath: pow_eq_eval, eval_pow, pow_apply
Β«term_::α΅£_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
atom_eq_eval πŸ“–mathematicalβ€”evalβ€”Mathlib.Tactic.FieldSimp.zpow'_one
mul_one
cons_eq_div_of_eq_div πŸ“–mathematicaleval
CommGroupWithZero.toGroupWithZero
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
consβ€”eval_cons
div_eq_mul_inv
Semigroup.to_isAssociative
CommMagma.to_isCommutative
cons_eq_div_of_eq_div' πŸ“–mathematicaleval
CommGroupWithZero.toGroupWithZero
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
consβ€”eval_cons
div_eq_mul_inv
Mathlib.Tactic.FieldSimp.zpow'_neg
mul_inv
Semigroup.to_isAssociative
CommMagma.to_isCommutative
cons_ne_zero πŸ“–β€”β€”β€”β€”mul_ne_zero
GroupWithZero.noZeroDivisors
cons_pos πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
eval
consβ€”mul_pos
Mathlib.Tactic.FieldSimp.zpow'_of_ne_zero_left
LT.lt.ne'
zpow_pos
cons_zero_eq_div_of_eq_div πŸ“–mathematicaleval
CommGroupWithZero.toGroupWithZero
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
consβ€”add_neg_cancel
eval_cons
div_eq_mul_inv
Mathlib.Tactic.FieldSimp.zpow'_add
mul_inv
Semigroup.to_isAssociative
CommMagma.to_isCommutative
div_eq_eval πŸ“–β€”eval
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
β€”β€”β€”
div_eq_eval₁ πŸ“–β€”DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
CommGroupWithZero.toGroupWithZero
eval
cons
β€”β€”eval_cons
div_eq_mul_inv
Semigroup.to_isAssociative
CommMagma.to_isCommutative
div_eq_evalβ‚‚ πŸ“–mathematicalDivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
CommGroupWithZero.toGroupWithZero
eval
consβ€”eval_cons
div_eq_mul_inv
mul_inv
sub_eq_add_neg
Mathlib.Tactic.FieldSimp.zpow'_add
Semigroup.to_isAssociative
CommMagma.to_isCommutative
div_eq_eval₃ πŸ“–β€”DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
CommGroupWithZero.toGroupWithZero
eval
cons
β€”β€”eval_cons
div_eq_mul_inv
mul_inv
mul_assoc
Mathlib.Tactic.FieldSimp.zpow'_neg
eval_cons πŸ“–mathematicalβ€”eval
CommGroupWithZero.toGroupWithZero
cons
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
Mathlib.Tactic.FieldSimp.zpow'
β€”mul_comm
eval_cons_eq_eval_of_eq_of_eq πŸ“–β€”eval
CommGroupWithZero.toGroupWithZero
cons
β€”β€”eval_cons
eval_cons_mul_eval πŸ“–mathematicalMulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
eval
consβ€”eval_cons
Semigroup.to_isAssociative
CommMagma.to_isCommutative
eval_cons_mul_eval_cons_neg πŸ“–mathematicalMulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
eval
consβ€”mul_eq_evalβ‚‚
add_neg_cancel
eval_cons
Mathlib.Tactic.FieldSimp.zpow'_zero_of_ne_zero
mul_one
eval_cons_of_pow_eq_zero πŸ“–mathematicalβ€”eval
CommGroupWithZero.toGroupWithZero
cons
β€”eval_cons
Mathlib.Tactic.FieldSimp.zpow'_zero_of_ne_zero
mul_one
eval_inv πŸ“–mathematicalβ€”eval
CommGroupWithZero.toGroupWithZero
Mathlib.Tactic.FieldSimp.NF
instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
β€”List.prod_inv
Mathlib.Tactic.FieldSimp.zpow'_neg
eval_mul_eval_cons πŸ“–mathematicalMulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
eval
consβ€”eval_cons
mul_assoc
eval_mul_eval_cons_zero πŸ“–β€”MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
eval
cons
β€”β€”eval_mul_eval_cons
eval_pow πŸ“–mathematicalβ€”eval
CommGroupWithZero.toGroupWithZero
Mathlib.Tactic.FieldSimp.NF
instPowNat
Mathlib.Tactic.FieldSimp.zpow'
β€”eval_zpow'
eval_zpow' πŸ“–mathematicalβ€”eval
CommGroupWithZero.toGroupWithZero
Mathlib.Tactic.FieldSimp.NF
instPowInt
Mathlib.Tactic.FieldSimp.zpow'
β€”Mathlib.Tactic.FieldSimp.list_prod_zpow'
mul_comm
inv_eq_eval πŸ“–mathematicaleval
CommGroupWithZero.toGroupWithZero
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Mathlib.Tactic.FieldSimp.NF
instInv
β€”eval_inv
mul_eq_eval πŸ“–β€”eval
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
β€”β€”β€”
mul_eq_eval₁ πŸ“–β€”MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
eval
cons
β€”β€”eval_cons
Semigroup.to_isAssociative
CommMagma.to_isCommutative
mul_eq_evalβ‚‚ πŸ“–mathematicalMulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
eval
consβ€”eval_cons
Mathlib.Tactic.FieldSimp.zpow'_add
Semigroup.to_isAssociative
CommMagma.to_isCommutative
mul_eq_eval₃ πŸ“–β€”MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
eval
cons
β€”β€”eval_cons
Semigroup.to_isAssociative
CommMagma.to_isCommutative
one_div_eq_eval πŸ“–mathematicalβ€”DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
CommGroupWithZero.toGroupWithZero
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
eval
Mathlib.Tactic.FieldSimp.NF
instInv
β€”one_div
eval_inv
one_eq_eval πŸ“–mathematicalβ€”InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
eval
β€”β€”
pow_apply πŸ“–mathematicalβ€”Mathlib.Tactic.FieldSimp.NF
instPowNat
β€”β€”
pow_eq_eval πŸ“–mathematicaleval
CommGroupWithZero.toGroupWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
Mathlib.Tactic.FieldSimp.NF
instPowNat
β€”eval_pow
Mathlib.Tactic.FieldSimp.zpow'_ofNat
zpow_apply πŸ“–mathematicalβ€”Mathlib.Tactic.FieldSimp.NF
instPowInt
β€”β€”
zpow_eq_eval πŸ“–mathematicaleval
CommGroupWithZero.toGroupWithZero
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
Mathlib.Tactic.FieldSimp.NF
instPowInt
β€”Mathlib.Tactic.FieldSimp.zpow'_of_ne_zero_right
eval_zpow'

Mathlib.Tactic.FieldSimp.Sign

Definitions

NameCategoryTheorems
div πŸ“–CompOpβ€”
expr πŸ“–CompOpβ€”
inv πŸ“–CompOpβ€”
mkEqMul πŸ“–CompOpβ€”
mul πŸ“–CompOpβ€”
mulRight πŸ“–CompOpβ€”
neg πŸ“–CompOpβ€”
pow πŸ“–CompOpβ€”
zpow πŸ“–CompOpβ€”

---

← Back to Index