Documentation Verification Report

Module

πŸ“ Source: Mathlib/Tactic/Module.lean

Statistics

MetricCount
DefinitionsNF, algebraMap, cons, eval, instNeg, instSMulOfMul, Β«term_::α΅£_Β», algebraMapThms, matchScalars, matchScalarsAux, parse, postprocess, qNF, add, matchRings, mkAddProof, mkSubProof, onScalar, sub, toNF, reduceCoefficientwise, tacticMatch_scalars, tacticModule
23
Theoremsadd_eq_eval, add_eq_eval₁, add_eq_evalβ‚‚, add_eq_eval₃, atom_eq_eval, eq_cons_cons, eq_cons_const, eq_const_cons, eq_of_eval_eq_eval, eval_algebraMap, eval_cons, eval_neg, eval_smul, neg_eq_eval, smul_apply, smul_eq_eval, sub_eq_eval, sub_eq_eval₁, sub_eq_evalβ‚‚, sub_eq_eval₃, zero_eq_eval, zero_sub_eq_eval
22
Total45

Mathlib.Tactic.Module

Definitions

NameCategoryTheorems
NF πŸ“–CompOp
6 mathmath: NF.eval_neg, NF.smul_apply, NF.zero_sub_eq_eval, NF.neg_eq_eval, NF.eval_smul, NF.smul_eq_eval
algebraMapThms πŸ“–CompOpβ€”
matchScalars πŸ“–CompOpβ€”
matchScalarsAux πŸ“–CompOpβ€”
parse πŸ“–CompOpβ€”
postprocess πŸ“–CompOpβ€”
qNF πŸ“–CompOpβ€”
reduceCoefficientwise πŸ“–CompOpβ€”
tacticMatch_scalars πŸ“–CompOpβ€”
tacticModule πŸ“–CompOpβ€”

Mathlib.Tactic.Module.NF

Definitions

NameCategoryTheorems
algebraMap πŸ“–CompOp
1 mathmath: eval_algebraMap
cons πŸ“–CompOp
6 mathmath: eq_cons_cons, eq_cons_const, sub_eq_evalβ‚‚, eq_const_cons, add_eq_evalβ‚‚, eval_cons
eval πŸ“–CompOp
6 mathmath: eval_algebraMap, atom_eq_eval, eval_neg, zero_sub_eq_eval, zero_eq_eval, eval_cons
instNeg πŸ“–CompOp
3 mathmath: eval_neg, zero_sub_eq_eval, neg_eq_eval
instSMulOfMul πŸ“–CompOp
3 mathmath: smul_apply, eval_smul, smul_eq_eval
Β«term_::α΅£_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq_eval πŸ“–β€”eval
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”β€”
add_eq_eval₁ πŸ“–β€”AddSemigroup.toAdd
AddMonoid.toAddSemigroup
eval
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
cons
β€”β€”eval_cons
add_assoc
add_eq_evalβ‚‚ πŸ“–mathematicalAddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
eval
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
cons
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”eval_cons
add_assoc
add_smul
add_comm
add_eq_eval₃ πŸ“–β€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
eval
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
cons
β€”β€”eval_cons
add_comm
add_assoc
atom_eq_eval πŸ“–mathematicalβ€”eval
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMul
β€”one_smul
add_zero
eq_cons_cons πŸ“–mathematicaleval
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
consβ€”eval_cons
eq_cons_const πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
eval
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
consβ€”eval_cons
zero_smul
zero_add
eq_const_cons πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
eval
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
consβ€”eval_cons
zero_smul
zero_add
eq_of_eval_eq_eval πŸ“–β€”eval
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”β€”
eval_algebraMap πŸ“–mathematicalβ€”eval
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
algebraMap
β€”IsScalarTower.algebraMap_smul
eval_cons πŸ“–mathematicalβ€”eval
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
cons
β€”β€”
eval_neg πŸ“–mathematicalβ€”eval
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
Mathlib.Tactic.Module.NF
instNeg
NegZeroClass.toNeg
Ring.toAddCommGroup
β€”List.sum_neg
neg_smul
eval_smul πŸ“–mathematicaleval
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Mathlib.Tactic.Module.NF
instSMulOfMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”List.smul_sum
SemigroupAction.mul_smul
neg_eq_eval πŸ“–mathematicaleval
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
NegZeroClass.toNeg
Mathlib.Tactic.Module.NF
instNeg
Ring.toAddCommGroup
β€”eval_neg
smul_apply πŸ“–mathematicalβ€”Mathlib.Tactic.Module.NF
instSMulOfMul
β€”β€”
smul_eq_eval πŸ“–mathematicaleval
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Mathlib.Tactic.Module.NF
instSMulOfMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”eval_smul
sub_eq_eval πŸ“–β€”eval
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Ring.toSemiring
SubNegMonoid.toSub
β€”β€”β€”
sub_eq_eval₁ πŸ“–β€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
eval
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
cons
β€”β€”eval_cons
sub_eq_add_neg
add_assoc
sub_eq_evalβ‚‚ πŸ“–mathematicalSubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
eval
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
cons
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”eval_cons
sub_eq_add_neg
neg_add
add_assoc
add_smul
neg_smul
add_comm
sub_eq_eval₃ πŸ“–mathematicalSubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
eval
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
cons
NegZeroClass.toNeg
Ring.toAddCommGroup
β€”eval_cons
sub_eq_add_neg
neg_add
neg_smul
add_comm
add_assoc
zero_eq_eval πŸ“–mathematicalβ€”AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
eval
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoid.toNatSMul
β€”β€”
zero_sub_eq_eval πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
eval
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
Mathlib.Tactic.Module.NF
instNeg
NegZeroClass.toNeg
Ring.toAddCommGroup
β€”zero_sub
eval_neg

Mathlib.Tactic.Module.qNF

Definitions

NameCategoryTheorems
add πŸ“–CompOpβ€”
matchRings πŸ“–CompOpβ€”
mkAddProof πŸ“–CompOpβ€”
mkSubProof πŸ“–CompOpβ€”
onScalar πŸ“–CompOpβ€”
sub πŸ“–CompOpβ€”
toNF πŸ“–CompOpβ€”

---

← Back to Index