Documentation Verification Report

GCD

πŸ“ Source: Mathlib/Tactic/NormNum/GCD.lean

Statistics

MetricCount
DefinitionsevalIntGCD, evalIntLCM, evalNatGCD, evalNatLCM, evalRatDen, evalRatNum, proveIntGCD, proveIntLCM, proveNatGCD, proveNatLCM
10
Theoremsint_gcd_helper, int_gcd_helper', int_lcm_helper, isInt_gcd, isInt_lcm, isInt_ratNum, isNat_gcd, isNat_lcm, isNat_ratDen, nat_gcd_helper_1, nat_gcd_helper_1', nat_gcd_helper_2, nat_gcd_helper_2', nat_gcd_helper_dvd_left, nat_gcd_helper_dvd_right, nat_lcm_helper
16
Total26

Tactic.NormNum

Definitions

NameCategoryTheorems
evalIntGCD πŸ“–CompOpβ€”
evalIntLCM πŸ“–CompOpβ€”
evalNatGCD πŸ“–CompOpβ€”
evalNatLCM πŸ“–CompOpβ€”
evalRatDen πŸ“–CompOpβ€”
evalRatNum πŸ“–CompOpβ€”
proveIntGCD πŸ“–CompOpβ€”
proveIntLCM πŸ“–CompOpβ€”
proveNatGCD πŸ“–CompOpβ€”
proveNatLCM πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
int_gcd_helper πŸ“–β€”β€”β€”β€”Int.gcd_def
int_gcd_helper' πŸ“–β€”β€”β€”β€”dvd_add
Distrib.leftDistribClass
Dvd.dvd.mul_right
int_lcm_helper πŸ“–β€”β€”β€”β€”Int.lcm_def
isInt_gcd πŸ“–mathematicalMathlib.Meta.NormNum.IsInt
Int.instRing
Mathlib.Meta.NormNum.IsNat
Nat.instAddMonoidWithOne
β€”β€”
isInt_lcm πŸ“–mathematicalMathlib.Meta.NormNum.IsInt
Int.instRing
Mathlib.Meta.NormNum.IsNat
Nat.instAddMonoidWithOne
β€”β€”
isInt_ratNum πŸ“–mathematicalMathlib.Meta.NormNum.IsRat
DivisionRing.toRing
Rat.instDivisionRing
Mathlib.Meta.NormNum.IsInt
Int.instRing
β€”Rat.instCharZero
Invertible.ne_zero
Rat.nontrivial
Rat.mul_num
invOf_eq_inv
Rat.inv_natCast_den_of_pos
Rat.inv_natCast_num_of_pos
one_mul
mul_one
Nat.cast_one
isNat_gcd πŸ“–β€”Mathlib.Meta.NormNum.IsNat
Nat.instAddMonoidWithOne
β€”β€”β€”
isNat_lcm πŸ“–β€”Mathlib.Meta.NormNum.IsNat
Nat.instAddMonoidWithOne
β€”β€”β€”
isNat_ratDen πŸ“–mathematicalMathlib.Meta.NormNum.IsRat
DivisionRing.toRing
Rat.instDivisionRing
Mathlib.Meta.NormNum.IsNat
Nat.instAddMonoidWithOne
β€”Rat.instCharZero
Invertible.ne_zero
Rat.nontrivial
Rat.mul_den
invOf_eq_inv
Rat.inv_natCast_den_of_pos
Rat.inv_natCast_num_of_pos
one_mul
mul_one
nat_gcd_helper_1 πŸ“–β€”β€”β€”β€”nat_gcd_helper_2
nat_gcd_helper_1' πŸ“–β€”β€”β€”β€”nat_gcd_helper_1
nat_gcd_helper_2 πŸ“–β€”β€”β€”β€”int_gcd_helper'
mul_neg
sub_eq_add_neg
sub_eq_iff_eq_add'
Int.instCharZero
nat_gcd_helper_2' πŸ“–β€”β€”β€”β€”nat_gcd_helper_2
nat_gcd_helper_dvd_left πŸ“–β€”β€”β€”β€”β€”
nat_gcd_helper_dvd_right πŸ“–β€”β€”β€”β€”β€”
nat_lcm_helper πŸ“–β€”β€”β€”β€”mul_right_injectiveβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero

---

← Back to Index