Documentation Verification Report

IsCoprime

πŸ“ Source: Mathlib/Tactic/NormNum/IsCoprime.lean

Statistics

MetricCount
DefinitionsIsCoprime, evalIntIsCoprime, proveIntIsCoprime
3
Theoremsint_not_isCoprime_helper, isInt_isCoprime, isInt_not_isCoprime
3
Total6

Tactic.NormNum

Definitions

NameCategoryTheorems
evalIntIsCoprime πŸ“–CompOpβ€”
proveIntIsCoprime πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
int_not_isCoprime_helper πŸ“–mathematicalβ€”IsCoprime
Int.instCommSemiring
β€”Int.isCoprime_iff_gcd_eq_one
isInt_isCoprime πŸ“–β€”Mathlib.Meta.NormNum.IsInt
Int.instRing
IsCoprime
Int.instCommSemiring
β€”β€”β€”
isInt_not_isCoprime πŸ“–β€”Mathlib.Meta.NormNum.IsInt
Int.instRing
IsCoprime
Int.instCommSemiring
β€”β€”β€”

(root)

Definitions

NameCategoryTheorems
IsCoprime πŸ“–MathDef
111 mathmath: Padic.norm_intCast_eq_one_iff, isCoprime_comm, IsCoprime.mul_add_left_right_iff, Polynomial.isCoprime_of_is_root_of_eval_derivative_ne_zero, ModularGroup.bottom_row_coprime, IsCoprime.add_mul_right_left_iff, IsCoprime.abs_right_iff, Int.isCoprime_iff_nat_coprime, Zsqrtd.exists_coprime_of_gcd_pos, Prime.coprime_iff_not_dvd, ModularGroup.bottom_row_surj, Int.isCoprime_iff_gcd_eq_one, Polynomial.UniversalCoprimeFactorizationRing.homEquiv_comp_snd, RatFunc.isCoprime_num_denom, Ideal.sup_eq_top_iff_isCoprime, IsCoprime.pow_left_iff, pairwise_coprime_iff_coprime_prod, dvd_or_isCoprime, Rat.isCoprime_num_den, isCoprime_group_smul_right, Ideal.isCoprime_iff_gcd, isCoprime_mul_unit_right_right, isCoprime_mul_unit_left_left, IsCoprime.add_mul_right_right_iff, IsCoprime.neg_right_iff, Polynomial.UniversalCoprimeFactorizationRing.homEquiv_comp_fst, Matrix.SpecialLinearGroup.isCoprime_col, IsRelPrime.isCoprime, not_isCoprime_zero_zero, isCoprime_group_smul_left, isCoprime_of_prime_dvd, IsCoprime.prod_right_iff, isCoprime_mul_unit_left, Polynomial.isCoprime_expand, exists_sum_eq_one_iff_pairwise_coprime', Matrix.SpecialLinearGroup.isCoprime_row, IsCoprime.mul_add_left_left_iff, Polynomial.isUnit_resultant_iff_isCoprime, EuclideanDomain.isCoprime_of_dvd, EisensteinSeries.finGcdMap_div, IsCoprime.add_mul_left_right_iff, isCoprime_mul_unit_right_left, Polynomial.cyclotomic.isCoprime_rat, isCoprime_zero_left, isCoprime_group_smul, Semifield.isCoprime_iff, isCoprime_of_dvd, isCoprime_div_gcd_div_gcd, isCoprime_of_irreducible_dvd, isCoprime_mul_unit_right, Ideal.isCoprime_tfae, isCoprime_self, ZMod.coe_int_isUnit_iff_isCoprime, Polynomial.natSepDegree_mul_eq_iff, Nat.isCoprime_iff_coprime, PadicInt.norm_intCast_eq_one_iff, IsCoprime.mul_right_iff, Ideal.isCoprime_iff_exists, Polynomial.separable_def, IsCoprime.mul_add_right_right_iff, Irreducible.dvd_iff_not_isCoprime, IsCoprime.pow_right_iff, gcd_isUnit_iff, IsCoprime.abs_left_iff, EuclideanDomain.gcd_isUnit_iff, Ideal.coprime_of_no_prime_ge, Polynomial.Separable.isCoprime, isCoprime_one_right, isCoprime_mul_unit_left_right, isCoprime_mul_units_left, Irreducible.isCoprime_or_dvd, Irreducible.coprime_pow_of_not_dvd, isRelPrime_iff_isCoprime, Ideal.isCoprime_span_singleton_iff, FermatLastTheoremForThreeGen.Solution'.coprime, isCoprime_zero_right, Ideal.isCoprime_iff_add, isCoprime_of_gcd_eq_one_of_FLT, IsCoprime.neg_left_iff, IsCoprime.pow_iff, isCoprime_mul_units_right, IsCoprime.abs_abs_iff, Polynomial.isCoprime_map, Nat.Coprime.cast, IsCoprime.neg_neg_iff, exists_sum_eq_one_iff_pairwise_coprime, IsPrimitiveRoot.arg, Fermat42.coprime_of_minimal, IsCoprime.prod_left_iff, Ideal.isCoprime_iff_codisjoint, Ideal.isCoprime_iff_sup_eq, IsCoprime.mul_left_iff, Tactic.NormNum.int_not_isCoprime_helper, Ideal.isCoprime_of_isMaximal, Polynomial.resultant_eq_zero_iff, isCoprime_div_gcd_div_gcd_of_gcd_ne_zero, Nat.isCoprime_iff, IsCoprime.add_mul_left_left_iff, Polynomial.pairwise_coprime_X_sub_C, PNat.isCoprime_iff, EuclideanDomain.dvd_or_coprime, Polynomial.UniversalCoprimeFactorizationRing.isCoprime_factor₁_factorβ‚‚, isCoprime_one_left, Polynomial.isCoprime_iff_aeval_ne_zero, FermatLastTheoremForThreeGen.ex_cube_add_cube_eq_and_isCoprime_and_not_dvd_and_dvd, Irreducible.coprime_iff_not_dvd, Polynomial.isCoprime_X_sub_C_of_isUnit_sub, IsCoprime.mul_add_right_left_iff, Nat.Coprime.isCoprime, EisensteinSeries.mem_gammaSet_one, Polynomial.isCoprime_iff_aeval_ne_zero_of_isAlgClosed

---

← Back to Index