Documentation Verification Report

IsSquare

๐Ÿ“ Source: Mathlib/Tactic/NormNum/IsSquare.lean

Statistics

MetricCount
DefinitionsIsSquare, evalIsSquareInt, evalIsSquareNat, evalIsSquareRat
4
Theoremsiff_isSquare_int_of_isNat, iff_isSquare_of_isInt_int, iff_isSquare_of_isInt_rat, iff_isSquare_of_isNat_rat, isSquare_nat_of_isNat, isSquare_of_isNNRat_rat, not_isSquare_nat_of_isNat, not_isSquare_of_isNNRat_rat_of_den, not_isSquare_of_isNNRat_rat_of_num, not_isSquare_of_isRat_neg
10
Total14

Mathlib.Meta.NormNum

Definitions

NameCategoryTheorems
evalIsSquareInt ๐Ÿ“–CompOpโ€”
evalIsSquareNat ๐Ÿ“–CompOpโ€”
evalIsSquareRat ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
iff_isSquare_int_of_isNat ๐Ÿ“–mathematicalIsNat
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
IsSquareโ€”IsNat.out
iff_isSquare_of_isInt_int ๐Ÿ“–mathematicalIsInt
Int.instRing
IsSquareโ€”IsInt.out
Int.cast_negOfNat
Nat.cast_zero
neg_zero
eq_or_ne
MulZeroClass.mul_zero
ne_of_lt
lt_of_le_of_lt
Int.instAddLeftMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
mul_self_pos
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
iff_isSquare_of_isInt_rat ๐Ÿ“–mathematicalIsInt
DivisionRing.toRing
Rat.instDivisionRing
IsSquareโ€”IsInt.out
Int.cast_negOfNat
Nat.cast_zero
neg_zero
eq_or_ne
MulZeroClass.mul_zero
Rat.instCharZero
ne_of_lt
lt_of_le_of_lt
Rat.instAddLeftMono
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
mul_self_pos
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
iff_isSquare_of_isNat_rat ๐Ÿ“–mathematicalIsNat
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Rat.instDivisionRing
IsSquareโ€”IsNat.out
isSquare_nat_of_isNat ๐Ÿ“–mathematicalIsNat
Nat.instAddMonoidWithOne
IsSquareโ€”IsNat.out
isSquare_of_isNNRat_rat ๐Ÿ“–โ€”IsSquare
IsNNRat
Rat.semiring
โ€”โ€”IsNNRat.to_eq
Nat.cast_mul
div_mul_div_comm
not_isSquare_nat_of_isNat ๐Ÿ“–mathematicalIsNat
Nat.instAddMonoidWithOne
IsSquareโ€”two_ne_zero
not_isSquare_of_isNNRat_rat_of_den ๐Ÿ“–โ€”IsSquare
IsNNRat
Rat.semiring
โ€”โ€”IsNNRat.to_eq
Rat.isSquare_iff
Int.cast_natCast
Int.isSquare_natCast_iff
Rat.den_div_eq_of_coprime
Mathlib.Tactic.Contrapose.contraposeโ‚
not_isSquare_of_isNNRat_rat_of_num ๐Ÿ“–โ€”IsSquare
IsNNRat
Rat.semiring
โ€”โ€”IsNNRat.to_eq
Rat.isSquare_iff
Int.cast_natCast
Rat.num_div_eq_of_coprime
Mathlib.Tactic.Contrapose.contraposeโ‚
not_isSquare_of_isRat_neg ๐Ÿ“–mathematicalIsRat
DivisionRing.toRing
Rat.instDivisionRing
IsSquareโ€”IsRat.neg_to_eq
ne_of_lt
Left.neg_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Rat.instAddLeftMono
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
IsStrictOrderedRing.toIsOrderedRing
Rat.nontrivial
mul_self_nonneg
AddGroup.existsAddOfLE
Rat.instPosMulMono

(root)

Definitions

NameCategoryTheorems
IsSquare ๐Ÿ“–MathDef
89 mathmath: ZMod.exists_sq_eq_prime_iff_of_mod_four_eq_one, legendreSym.eq_neg_one_iff, Rat.isSquare_intCast_iff, Mathlib.Meta.NormNum.not_isSquare_of_isRat_neg, FiniteField.isSquare_neg_one_iff, FiniteField.isSquare_two_iff, even_ofMul_iff, isSquare_toMul_iff, ZMod.exists_sq_eq_prime_iff_of_mod_four_eq_three, Subgroup.mem_square, ZMod.exists_sq_eq_neg_one_iff, Subsemiring.closure_isSquare, Irreducible.not_isSquare, irrational_sqrt_ratCast_iff, Mathlib.Meta.NormNum.iff_isSquare_of_isInt_int, Rat.isSquare_ofNat_iff, irrational_sqrt_intCast_iff, Nat.eq_sq_add_sq_iff_eq_sq_mul, isSquare_ofAdd_iff, Mathlib.Meta.NormNum.isSquare_nat_of_isNat, ZMod.exists_sq_eq_two_iff, NNReal.isSquare, isSquare_inv, Pell.IsFundamental.d_nonsquare, irrational_sqrt_natCast_iff, ZMod.isSquare_neg_one_iff_forall_mem_primeFactors_mod_four_ne_three, Subgroup.coe_square, irrational_sqrt_ratCast_iff_of_nonneg, AddSubmonoid.closure_isSquare, isSquare_iff_exists_mul_self, Submonoid.mem_square, IsSquare.zero, IsSquare.sq, even_toAdd_iff, Mathlib.Meta.NormNum.iff_isSquare_of_isInt_rat, Prime.not_isSquare, irrational_sqrt_intCast_iff_of_nonneg, FiniteField.isSquare_neg_two_iff, ZMod.nonsquare_of_jacobiSym_eq_neg_one, ZMod.isSquare_neg_one_iff, legendreSym.eq_one_iff, Mathlib.Meta.NormNum.iff_isSquare_of_isNat_rat, isSquare_op_iff, Rat.isSquare_natCast_iff, not_isSquare_of_neg, isSquare_iff_exists_sq, IsSquare.mul_self, FiniteField.exists_nonsquare, FiniteField.unit_isSquare_iff, isSquare_mabs, Even.isSquare_pow, Mathlib.Meta.NormNum.not_isSquare_nat_of_isNat, Rat.isSquare_iff, Subsemigroup.mem_square, isSquare_subset_image_isSquare, isSquare_of_charTwo', IsSquare.one, ZMod.isSquare_neg_one_of_eq_sq_add_sq_of_coprime, Pell.Solutionโ‚.d_nonsquare_of_one_lt_x, Even.isSquare_zpow, legendreSym.eq_one_iff', FiniteField.isSquare_iff, Polynomial.nthRoots_two_eq_zero_iff, FiniteField.isSquare_odd_prime_iff, ZMod.isSquare_neg_one_iff', ZMod.nonsquare_iff_jacobiSym_eq_neg_one, isSquare_unop_iff, Int.isSquare_sign_iff, Pell.exists_iff_not_isSquare, IsRealClosed.nonneg_iff_isSquare, Submonoid.coe_square, legendreSym.eq_neg_one_iff', FiniteField.isSquare_of_char_two, IsRealClosed.isSquare_or_isSquare_neg, Int.isSquare_ofNat_iff, ZMod.isSquare_of_jacobiSym_eq_one, ZMod.isSquare_neg_one_of_eq_sq_add_sq_of_isCoprime, quadraticChar_neg_one_iff_not_isSquare, Mathlib.Meta.NormNum.iff_isSquare_int_of_isNat, Real.isSquare_iff, NonUnitalSubsemiring.closure_isSquare, irrational_sqrt_ofNat_iff, ZMod.euler_criterion, ZMod.exists_sq_eq_neg_two_iff, Int.isSquare_natCast_iff, Complex.isSquare, quadraticChar_one_iff_isSquare, IsSquare.of_nonneg, Subsemigroup.coe_square

---

โ† Back to Index