Documentation Verification Report

Prime

📁 Source: Mathlib/Tactic/NormNum/Prime.lean

Statistics

MetricCount
DefinitionsMinFacHelper, deriveNotPrime, evalMinFac, evalNatPrime, Prime, Prime
6
Theoremsone_lt, isNat_minFac_1, isNat_minFac_2, isNat_minFac_3, isNat_minFac_4, isNat_not_prime, isNat_prime_0, isNat_prime_1, isNat_prime_2, minFacHelper_0, minFacHelper_1, minFacHelper_2, minFacHelper_3, not_prime_mul_of_ble
14
Total20

Mathlib.Meta.NormNum

Definitions

NameCategoryTheorems
MinFacHelper 📖MathDef
1 mathmath: minFacHelper_0
deriveNotPrime 📖CompOp
evalMinFac 📖CompOp
evalNatPrime 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isNat_minFac_1 📖mathematicalIsNat
Nat.instAddMonoidWithOne
Nat.minFacNat.minFac_one
isNat_minFac_2 📖mathematicalIsNat
Nat.instAddMonoidWithOne
Nat.minFacNat.instAtLeastTwoHAddOfNat
Nat.cast_ofNat
Nat.minFac_eq_two_iff
isNat_minFac_3 📖mathematicalIsNat
Nat.instAddMonoidWithOne
MinFacHelper
Nat.minFacle_antisymm
Nat.minFac_le_of_dvd
LT.lt.le
isNat_minFac_4 📖mathematicalIsNat
Nat.instAddMonoidWithOne
MinFacHelper
Nat.minFacNat.prime_def_minFac
Nat.prime_def_le_sqrt
MinFacHelper.one_lt
lt_irrefl
Nat.sqrt_lt
ble_eq_false
Nat.minFac_le_of_dvd
isNat_not_prime 📖IsNat
Nat.instAddMonoidWithOne
Nat.Prime
isNat.natElim
isNat_prime_0 📖mathematicalIsNat
Nat.instAddMonoidWithOne
Nat.PrimeNat.not_prime_zero
isNat_prime_1 📖mathematicalIsNat
Nat.instAddMonoidWithOne
Nat.PrimeNat.not_prime_one
isNat_prime_2 📖mathematicalIsNat
Nat.instAddMonoidWithOne
Nat.minFac
Nat.PrimeNat.prime_def_minFac
minFacHelper_0 📖mathematicalMinFacHelperNat.le_minFac'
LE.le.eq_or_lt
minFacHelper_1 📖MinFacHelperadd_zero
LE.le.eq_or_lt
LT.lt.ne
LT.lt.trans_le
Nat.instAtLeastTwoHAddOfNat
Nat.instCharZero
Nat.dvd_prime
Nat.minFac_prime
LT.lt.ne'
MinFacHelper.one_lt
minFacHelper_2 📖Nat.Prime
MinFacHelper
minFacHelper_1
Nat.minFac_prime
LT.lt.ne'
MinFacHelper.one_lt
minFacHelper_3 📖MinFacHelperminFacHelper_1
Nat.minFac_dvd
not_prime_mul_of_ble 📖mathematicalNat.PrimeNat.not_prime_of_mul_eq
LT.lt.ne'
ble_eq_false

Mathlib.Meta.NormNum.MinFacHelper

Theorems

NameKindAssumesProvesValidatesDepends On
one_lt 📖Mathlib.Meta.NormNum.MinFacHelperLT.lt.trans_le
LE.le.eq_or_lt
zero_add
Nat.minFac_one
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat

PosNum

Definitions

NameCategoryTheorems
Prime 📖MathDef

(root)

Definitions

NameCategoryTheorems
Prime 📖MathDef
77 mathmath: minpoly.prime_of_isIntegrallyClosed, IsPrimitiveRoot.zeta_sub_one_prime_of_two_pow, UniqueFactorizationMonoid.mem_normalizedFactors_iff, Ideal.prime_of_mem_primesOver, PowerSeries.X_prime, UniqueFactorizationMonoid.exists_prime_factors, Nat.prime_iff_prime_int, Ideal.isPrime_iff_bot_or_prime, Polynomial.prime_C_iff, MvPolynomial.prime_rename_iff, IsPrimitiveRoot.zeta_sub_one_prime_of_ne_two, prime_mul_iff, Nat.prime_iff, Polynomial.Monic.prime_of_degree_eq_one, MvPolynomial.X_prime, Int.prime_two, Ideal.prime_span_singleton_iff, Ideal.prime_of_irreducible_absNorm_span, IsPrimitiveRoot.prime_norm_toInteger_sub_one_of_prime_pow_ne_two, not_prime_zero, UniqueFactorizationMonoid.exists_prime_iff, UniqueFactorizationMonoid.irreducible_iff_prime, isPrimePow_iff_pow_succ, prime_pow_iff, Int.prime_three, MulEquiv.prime_iff, Nat.irreducible_iff_prime, Nat.Prime.prime, IsSquare.not_prime, IsPrimitiveRoot.prime_norm_toInteger_sub_one_of_prime_ne_two', Nat.Primes.prodNatEquiv_apply, Irreducible.prime_of_isPrimal, Polynomial.prime_of_degree_eq_one, minpoly.prime, IsDedekindDomain.HeightOneSpectrum.prime, Cardinal.is_prime_iff, Polynomial.prime_X_sub_C, IsDiscreteValuationRing.exists_prime, MvPolynomial.prime_C_iff, Int.prime_ofNat_iff, UniqueFactorizationMonoid.prime_of_normalized_factor, UniqueFactorizationMonoid.prime_of_factor, IsPrimitiveRoot.prime_norm_toInteger_sub_one_of_prime_ne_two, Associates.prime_mk, UniqueFactorizationMonoid.iff_exists_prime_mem_of_isPrime, irreducible_iff_prime_of_existsUnique_irreducible_factors, Int.exists_prime_and_dvd, Ideal.prime_iff_isPrime, Ideal.isPrime_iff_of_isPrincipalIdealRing_of_noZeroDivisors, UniqueFactorizationMonoid.iff_exists_prime_factors, Cardinal.nat_is_prime_iff, Submodule.IsPrincipal.prime_generator_of_isPrime, Associates.exists_prime_dvd_of_not_inf_one, Cardinal.prime_of_aleph0_le, Associates.irreducible_iff_prime_iff, Ideal.isPrime_iff_of_isPrincipalIdealRing, Ideal.IsPrime.exists_mem_prime_of_ne_bot, Associated.prime_iff, isPrimePow_def, GaussianInt.prime_of_nat_prime_of_mod_four_eq_three, not_prime_one, not_prime_pow, Polynomial.prime_X, Irreducible.prime, Ideal.span_singleton_prime, Int.prime_iff_natAbs_prime, IsPrimitiveRoot.zeta_sub_one_prime, map_prime_of_factor_orderIso, irreducible_iff_prime, Associates.coprime_iff_inf_one, associates_irreducible_iff_prime, UniqueFactorizationMonoid.isRelPrime_iff_no_prime_factors, Ideal.prime_of_isPrime, PadicInt.prime_p, GaussianInt.prime_iff_mod_four_eq_three_of_nat_prime, IsPrimitiveRoot.subOneIntegralPowerBasisOfPrimePow_gen_prime, IsPrimitiveRoot.zeta_sub_one_prime'

---

← Back to Index