Documentation Verification Report

Result

📁 Source: Mathlib/Tactic/NormNum/Result.lean

Statistics

MetricCount
DefinitionsrawCast, Result, BoolResult, IsInt, IsNNRat, IsNat, IsRat, Result, Result', eqTrans, isFalse, isInt, isNNRat, isNNRat', isNat, isNegNNRat, isNegNat, isRat, isTrue, ofBoolResult, ofRawInt, ofRawNNRat, ofRawNat, ofRawRat, toInt, toNNRat', toRat, toRat', toRatNZ, toRawEq, toRawIntEq, toSimpResult, inferAddMonoidWithOne, inferRing, inferSemiring, instAddMonoidWithOne, instAddMonoidWithOne', instInhabitedResult, instInhabitedResult', default, instToMessageDataResult, mkOfNat, mkRawIntLit, mkRawRatLit, rawIntLitNatAbs, Result, Result, Result, Result, rawCast, rawCast, rawCast
52
Theoremsneg_to_eq, nonneg_to_eq, of_raw, out, to_isNat, to_isRat, to_raw_eq, den_nz, of_raw, to_eq, to_isNat, to_isRat, to_raw_eq, of_raw, out, raw_refl, to_eq, to_isInt, to_isNNRat, to_raw_eq, den_nz, neg_to_eq, of_raw, to_isInt, to_isNNRat, to_raw_eq, instAtLeastTwo, natElim
28
Total80

Int

Definitions

NameCategoryTheorems
rawCast 📖CompOp
6 mathmath: Mathlib.Tactic.Ring.cast_neg, Mathlib.Tactic.RingNF.rat_rawCast_neg, Mathlib.Meta.NormNum.IsInt.to_raw_eq, Mathlib.Meta.NormNum.IsInt.of_raw, Mathlib.Tactic.RingNF.int_rawCast_neg, Mathlib.Tactic.Ring.intCast_negOfNat_Int

Mathlib.Meta.FunProp

Definitions

NameCategoryTheorems
Result 📖CompData

Mathlib.Meta.NormNum

Definitions

NameCategoryTheorems
BoolResult 📖CompOp
IsInt 📖CompData
10 mathmath: IsRat.to_isInt, IsInt.raw_refl, Rat.IsRat.isInt_round, isInt_jacobiSymNat, isInt_negOfNat, IsInt.of_raw, Tactic.NormNum.isInt_ratNum, Rat.isInt_intFloor_ofIsRat_neg, IsNat.to_isInt, Rat.isInt_intCeil_ofIsRat_neg
IsNNRat 📖CompData
4 mathmath: IsNat.to_isNNRat, IsNNRat.of_raw, isNNRat_abs_neg, IsRat.to_isNNRat
IsNat 📖CompData
26 mathmath: Tactic.NormNum.isInt_lcm, IsNNRat.natFloor, Finset.prod_empty, Rat.isNat_intCeil_ofIsNNRat, IsNat.of_raw, IsNNRat.natCeil, isNat_ofNat, Rat.isNat_intFract_of_isInt, IsRat.natFloor, isNat_zero, Tactic.NormNum.isInt_gcd, IsNat.raw_refl, IsInt.to_isNat, Rat.isNat_intFloor_ofIsNNRat, Finset.sum_empty, IsRat.natCeil, IsNNRat.to_isNat, Tactic.NormNum.isNat_realSqrt_neg, IsInt.natCeil, IsInt.natFloor, Tactic.NormNum.isNat_ratDen, isNat_neg_of_isNegNat, isNat_one, isNat_natAbs_neg, isNat_abs_neg, Tactic.NormNum.isNat_realSqrt_of_isRat_negOfNat
IsRat 📖CompData
3 mathmath: IsInt.to_isRat, IsNNRat.to_isRat, IsRat.of_raw
Result 📖CompOp
Result' 📖CompData
inferAddMonoidWithOne 📖CompOp
inferRing 📖CompOp
inferSemiring 📖CompOp
instAddMonoidWithOne 📖CompOp
instAddMonoidWithOne' 📖CompOp
instInhabitedResult 📖CompOp
instInhabitedResult' 📖CompOp
instToMessageDataResult 📖CompOp
mkOfNat 📖CompOp
mkRawIntLit 📖CompOp
mkRawRatLit 📖CompOp
rawIntLitNatAbs 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instAtLeastTwo 📖mathematicalNat.AtLeastTwoNat.instAtLeastTwoHAddOfNat

Mathlib.Meta.NormNum.IsInt

Theorems

NameKindAssumesProvesValidatesDepends On
neg_to_eq 📖mathematicalMathlib.Meta.NormNum.IsInt
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
Int.cast_neg
Int.cast_natCast
nonneg_to_eq 📖Mathlib.Meta.NormNum.IsInt
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Mathlib.Meta.NormNum.IsNat.to_eq
to_isNat
of_raw 📖mathematicalMathlib.Meta.NormNum.IsInt
Int.rawCast
out 📖mathematicalMathlib.Meta.NormNum.IsIntAddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
to_isNat 📖mathematicalMathlib.Meta.NormNum.IsIntMathlib.Meta.NormNum.IsNat
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.cast_natCast
to_isRat 📖mathematicalMathlib.Meta.NormNum.IsIntMathlib.Meta.NormNum.IsRatNat.cast_one
mul_one
to_raw_eq 📖mathematicalMathlib.Meta.NormNum.IsIntInt.rawCast

Mathlib.Meta.NormNum.IsNNRat

Theorems

NameKindAssumesProvesValidatesDepends On
den_nz 📖Mathlib.Meta.NormNum.IsNNRat
DivisionSemiring.toSemiring
Invertible.ne_zero
GroupWithZero.toNontrivial
of_raw 📖mathematicalMathlib.Meta.NormNum.IsNNRat
DivisionSemiring.toSemiring
NNRat.rawCast
div_eq_mul_inv
invOf_eq_inv
to_eq 📖mathematicalMathlib.Meta.NormNum.IsNNRat
DivisionSemiring.toSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
invOf_eq_inv
div_eq_mul_inv
to_isNat 📖mathematicalMathlib.Meta.NormNum.IsNNRatMathlib.Meta.NormNum.IsNat
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Invertible.congr
Nat.cast_one
invOf_one'
mul_one
to_isRat 📖mathematicalMathlib.Meta.NormNum.IsNNRat
Ring.toSemiring
Mathlib.Meta.NormNum.IsRatInt.cast_natCast
to_raw_eq 📖mathematicalMathlib.Meta.NormNum.IsNNRat
DivisionSemiring.toSemiring
NNRat.rawCastinvOf_eq_inv
div_eq_mul_inv

Mathlib.Meta.NormNum.IsNat

Theorems

NameKindAssumesProvesValidatesDepends On
of_raw 📖mathematicalMathlib.Meta.NormNum.IsNat
Nat.rawCast
out 📖mathematicalMathlib.Meta.NormNum.IsNatAddMonoidWithOne.toNatCast
raw_refl 📖mathematicalMathlib.Meta.NormNum.IsNat
Nat.instAddMonoidWithOne
to_eq 📖Mathlib.Meta.NormNum.IsNat
AddMonoidWithOne.toNatCast
to_isInt 📖mathematicalMathlib.Meta.NormNum.IsNat
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Mathlib.Meta.NormNum.IsIntInt.cast_natCast
to_isNNRat 📖mathematicalMathlib.Meta.NormNum.IsNat
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Mathlib.Meta.NormNum.IsNNRatNat.cast_one
mul_one
to_raw_eq 📖mathematicalMathlib.Meta.NormNum.IsNatNat.rawCast

Mathlib.Meta.NormNum.IsRat

Theorems

NameKindAssumesProvesValidatesDepends On
den_nz 📖Mathlib.Meta.NormNum.IsRat
DivisionRing.toRing
Invertible.ne_zero
DivisionRing.toNontrivial
neg_to_eq 📖mathematicalMathlib.Meta.NormNum.IsRat
DivisionRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Int.cast_negOfNat
invOf_eq_inv
neg_mul
div_eq_mul_inv
of_raw 📖mathematicalMathlib.Meta.NormNum.IsRat
DivisionRing.toRing
Rat.rawCast
div_eq_mul_inv
invOf_eq_inv
to_isInt 📖mathematicalMathlib.Meta.NormNum.IsRatMathlib.Meta.NormNum.IsIntInvertible.congr
Nat.cast_one
invOf_one'
mul_one
to_isNNRat 📖mathematicalMathlib.Meta.NormNum.IsRatMathlib.Meta.NormNum.IsNNRat
Ring.toSemiring
Int.cast_natCast
to_raw_eq 📖mathematicalMathlib.Meta.NormNum.IsRat
DivisionRing.toRing
Rat.rawCastinvOf_eq_inv
div_eq_mul_inv

Mathlib.Meta.NormNum.Result

Definitions

NameCategoryTheorems
eqTrans 📖CompOp
isFalse 📖CompOp
isInt 📖CompOp
isNNRat 📖CompOp
isNNRat' 📖CompOp
isNat 📖CompOp
isNegNNRat 📖CompOp
isNegNat 📖CompOp
isRat 📖CompOp
isTrue 📖CompOp
ofBoolResult 📖CompOp
ofRawInt 📖CompOp
ofRawNNRat 📖CompOp
ofRawNat 📖CompOp
ofRawRat 📖CompOp
toInt 📖CompOp
toNNRat' 📖CompOp
toRat 📖CompOp
toRat' 📖CompOp
toRatNZ 📖CompOp
toRawEq 📖CompOp
toRawIntEq 📖CompOp
toSimpResult 📖CompOp

Mathlib.Meta.NormNum.instInhabitedResult'

Definitions

NameCategoryTheorems
default 📖CompOp

Mathlib.Meta.NormNum.isNat

Theorems

NameKindAssumesProvesValidatesDepends On
natElim 📖Mathlib.Meta.NormNum.IsNat
Nat.instAddMonoidWithOne

Mathlib.Tactic.BicategoryLike.Eval

Definitions

NameCategoryTheorems
Result 📖CompData

Mathlib.Tactic.BicategoryLike.Normalize

Definitions

NameCategoryTheorems
Result 📖CompData

Mathlib.Tactic.Ring

Definitions

NameCategoryTheorems
Result 📖CompData

Mathlib.Tactic.withResetServerInfo

Definitions

NameCategoryTheorems
Result 📖CompData

NNRat

Definitions

NameCategoryTheorems
rawCast 📖CompOp
4 mathmath: Mathlib.Tactic.RingNF.nnrat_rawCast, Mathlib.Meta.NormNum.IsNNRat.of_raw, Mathlib.Tactic.Ring.cast_nnrat, Mathlib.Meta.NormNum.IsNNRat.to_raw_eq

Nat

Definitions

NameCategoryTheorems
rawCast 📖CompOp
23 mathmath: Mathlib.Tactic.RingNF.nnrat_rawCast, Mathlib.Tactic.Ring.coeff_one, Mathlib.Tactic.Ring.one_mul, Mathlib.Meta.NormNum.IsNat.of_raw, Mathlib.Tactic.Ring.natCast_int, Mathlib.Tactic.Ring.natCast_nat, Mathlib.Tactic.Ring.atom_pf', Mathlib.Tactic.Ring.one_pow, Mathlib.Tactic.Ring.pow_one_cast, Mathlib.Tactic.RingNF.rat_rawCast_neg, Mathlib.Tactic.Ring.mul_one, Mathlib.Tactic.Ring.const_pos, Mathlib.Tactic.Ring.pow_prod_atom, Mathlib.Tactic.RingNF.nat_rawCast_2, Mathlib.Tactic.Ring.cast_pos, Mathlib.Tactic.RingNF.nat_rawCast_1, Mathlib.Tactic.Ring.atom_pf, Mathlib.Tactic.Ring.toProd_pf, Mathlib.Tactic.RingNF.int_rawCast_neg, Mathlib.Tactic.RingNF.nat_rawCast_0, Mathlib.Meta.NormNum.IsNat.to_raw_eq, Mathlib.Tactic.Ring.pow_zero, Mathlib.Tactic.Ring.pow_atom

Rat

Definitions

NameCategoryTheorems
rawCast 📖CompOp
4 mathmath: Mathlib.Tactic.Ring.cast_rat, Mathlib.Meta.NormNum.IsRat.to_raw_eq, Mathlib.Tactic.RingNF.rat_rawCast_neg, Mathlib.Meta.NormNum.IsRat.of_raw

---

← Back to Index