Documentation Verification Report

Functions

πŸ“ Source: Mathlib/Testing/Plausible/Functions.lean

Statistics

MetricCount
DefinitionsFunctions, testable, testable, InjectiveFunction, applyId, slice, sampleableExt, apply, instArbitraryInt, instRepr, mk, repr, shrink, shrinkPerm, sliceSizes, testable, sampleableExt, sampleableExt, applyFinsupp, zeroDefault, zeroDefaultSupp, instInhabitedInjectiveFunction
22
TheoremsapplyId_cons, applyId_eq_self, applyId_zip_eq, applyId_injective, applyId_mem_iff, injective
6
Total28

FirstOrder.Language

Definitions

NameCategoryTheorems
Functions πŸ“–CompOp
31 mathmath: LHom.Injective.onFunction, Term.listDecode_encode_list, LHom.sumElim_onFunction, LHom.sumMap_onFunction, LHom.funMap_sumInl, skolem₁_Functions, card_eq_card_functions_add_card_relations, empty.isFraisseLimit_of_countable_infinite, LHom.funMap_sumInr, constantsOn_Functions, card_functions_sum_skolem₁_le, Countable.countable_functions, Term.listEncode_injective, LHom.sumInr_onFunction, card_functions_sum_skolem₁, LHom.sumInl_onFunction, withConstants_funMap_sumInl, lhomWithConstants_onFunction, funMap_sumInr, Term.card_sigma, ElementaryEmbedding.ofModelsElementaryDiagram_toFun, Term.card_le, withConstants_funMap_sumInr, orderLHom_onFunction, Term.encoding_Ξ“, LHom.id_onFunction, card_functions_sum, LHom.ofIsEmpty_onFunction, funMap_sumInl, Substructure.lift_card_closure_le, isEmpty_functions_constantsOn_succ

Plausible

Definitions

NameCategoryTheorems
InjectiveFunction πŸ“–CompDataβ€”
instInhabitedInjectiveFunction πŸ“–CompOpβ€”

Plausible.Antitone

Definitions

NameCategoryTheorems
testable πŸ“–CompOpβ€”

Plausible.Injective

Definitions

NameCategoryTheorems
testable πŸ“–CompOpβ€”

Plausible.InjectiveFunction

Definitions

NameCategoryTheorems
apply πŸ“–CompOp
1 mathmath: injective
instArbitraryInt πŸ“–CompOpβ€”
instRepr πŸ“–CompOpβ€”
mk πŸ“–CompOpβ€”
repr πŸ“–CompOpβ€”
shrink πŸ“–CompOpβ€”
shrinkPerm πŸ“–CompOpβ€”
sliceSizes πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
applyId_injective πŸ“–mathematicalβ€”List.applyIdβ€”List.applyId_zip_eq
applyId_mem_iff
List.applyId_eq_self
applyId_mem_iff πŸ“–mathematicalβ€”List.applyIdβ€”List.mem_dlookup_iff
le_of_eq
injective πŸ“–mathematicalβ€”applyβ€”Plausible.TotalFunction.List.toFinmap'.eq_1
Sigma.eta
applyId_injective

Plausible.InjectiveFunction.List

Definitions

NameCategoryTheorems
applyId πŸ“–CompOp
5 mathmath: Plausible.InjectiveFunction.applyId_mem_iff, applyId_cons, applyId_eq_self, applyId_zip_eq, Plausible.InjectiveFunction.applyId_injective

Theorems

NameKindAssumesProvesValidatesDepends On
applyId_cons πŸ“–mathematicalβ€”applyIdβ€”β€”
applyId_eq_self πŸ“–mathematicalβ€”applyIdβ€”List.dlookup_eq_none
applyId_zip_eq πŸ“–mathematicalβ€”applyIdβ€”applyId_cons
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Nat.instZeroLEOneClass

Plausible.InjectiveFunction.Perm

Definitions

NameCategoryTheorems
slice πŸ“–CompOpβ€”

Plausible.InjectiveFunction.PiInjective

Definitions

NameCategoryTheorems
sampleableExt πŸ“–CompOpβ€”

Plausible.Monotone

Definitions

NameCategoryTheorems
testable πŸ“–CompOpβ€”

Plausible.TotalFunction

Definitions

NameCategoryTheorems
applyFinsupp πŸ“–CompOpβ€”
zeroDefault πŸ“–CompOpβ€”
zeroDefaultSupp πŸ“–CompOpβ€”

Plausible.TotalFunction.DFinsupp

Definitions

NameCategoryTheorems
sampleableExt πŸ“–CompOpβ€”

Plausible.TotalFunction.Finsupp

Definitions

NameCategoryTheorems
sampleableExt πŸ“–CompOpβ€”

---

← Back to Index