Documentation Verification Report

AlexandrovDiscrete

πŸ“ Source: Mathlib/Topology/AlexandrovDiscrete.lean

Statistics

MetricCount
Definitions0
TheoremsisOpen_sInter, sup, toFirstCountable, toLocallyCompactSpace, toAlexandrovDiscrete, toAlexandrovDiscrete, instAlexandrovDiscreteOfFinite, instAlexandrovDiscrete, instAlexandrovDiscrete, instAlexandrovDiscrete, instAlexandrovDiscrete, instAlexandrovDiscrete, alexandrovDiscrete, alexandrovDiscrete_coinduced, alexandrovDiscrete_iSup, alexandrovDiscrete_iff, alexandrovDiscrete_iff_isClosed, alexandrovDiscrete_iff_nhds, closure_iUnion, closure_sUnion, gc_nhdsKer_interior, interior_iInter, interior_sInter, isClopen_iInter, isClopen_iInterβ‚‚, isClopen_iUnion, isClopen_iUnionβ‚‚, isClopen_sInter, isClopen_sUnion, isClosed_iUnion, isClosed_iUnionβ‚‚, isClosed_sUnion, isOpen_iInter, isOpen_iInterβ‚‚, isOpen_iff_forall_specializes, isOpen_nhdsKer, isOpen_sInter, nhdsKer_eq_iff_isOpen, nhdsKer_mem_nhdsSet, nhdsKer_singleton_subset_iff_mem_nhds, nhdsKer_subset_iff, nhdsKer_subset_iff_isOpen, nhdsKer_subset_iff_mem_nhdsSet, nhdsSet_basis_nhdsKer, nhds_basis_nhdsKer_singleton, principal_nhdsKer, principal_nhdsKer_singleton
47
Total47

AlexandrovDiscrete

Theorems

NameKindAssumesProvesValidatesDepends On
isOpen_sInter πŸ“–mathematicalIsOpenSet.sInterβ€”β€”
sup πŸ“–mathematicalβ€”AlexandrovDiscrete
TopologicalSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”isOpen_sInter
toFirstCountable πŸ“–mathematicalβ€”FirstCountableTopologyβ€”Set.countable_singleton
Filter.generate_singleton
principal_nhdsKer
nhdsSet_singleton
toLocallyCompactSpace πŸ“–mathematicalβ€”LocallyCompactSpaceβ€”IsOpen.mem_nhds
isOpen_nhdsKer
subset_nhdsKer
Set.mem_singleton
nhdsKer_singleton_subset_iff_mem_nhds
IsCompact.nhdsKer
isCompact_singleton

DiscreteTopology

Theorems

NameKindAssumesProvesValidatesDepends On
toAlexandrovDiscrete πŸ“–mathematicalβ€”AlexandrovDiscreteβ€”isOpen_discrete

Finite

Theorems

NameKindAssumesProvesValidatesDepends On
toAlexandrovDiscrete πŸ“–mathematicalβ€”AlexandrovDiscreteβ€”Set.Finite.isOpen_sInter
Set.toFinite
Subtype.finite
Set.instFinite

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
instAlexandrovDiscreteOfFinite πŸ“–mathematicalAlexandrovDiscretetopologicalSpaceβ€”nhds_pi
Filter.pi_principal
nhdsKer_singleton_pi

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
instAlexandrovDiscrete πŸ“–mathematicalβ€”AlexandrovDiscrete
instTopologicalSpaceProd
β€”nhds_prod_eq
Filter.prod_principal_principal
nhdsKer_pair

Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
instAlexandrovDiscrete πŸ“–mathematicalβ€”AlexandrovDiscrete
instTopologicalSpaceQuotient
β€”alexandrovDiscrete_coinduced

Sigma

Theorems

NameKindAssumesProvesValidatesDepends On
instAlexandrovDiscrete πŸ“–mathematicalAlexandrovDiscreteinstTopologicalSpaceSigmaβ€”alexandrovDiscrete_iSup
alexandrovDiscrete_coinduced

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
instAlexandrovDiscrete πŸ“–mathematicalβ€”AlexandrovDiscrete
instTopologicalSpaceSubtype
β€”Topology.IsInducing.alexandrovDiscrete
Topology.IsInducing.subtypeVal

Sum

Theorems

NameKindAssumesProvesValidatesDepends On
instAlexandrovDiscrete πŸ“–mathematicalβ€”AlexandrovDiscrete
instTopologicalSpaceSum
β€”AlexandrovDiscrete.sup
alexandrovDiscrete_coinduced

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
alexandrovDiscrete πŸ“–mathematicalTopology.IsInducingAlexandrovDiscreteβ€”isOpen_iff
isOpen_iInterβ‚‚
Set.preimage_iInter
Set.iInter_congr_Prop
Set.sInter_eq_biInter

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
alexandrovDiscrete_coinduced πŸ“–mathematicalβ€”AlexandrovDiscrete
TopologicalSpace.coinduced
β€”isOpen_coinduced
Set.preimage_sInter
isOpen_iInterβ‚‚
alexandrovDiscrete_iSup πŸ“–mathematicalAlexandrovDiscreteiSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”isOpen_iSup_iff
isOpen_sInter
alexandrovDiscrete_iff πŸ“–mathematicalβ€”AlexandrovDiscrete
IsOpen
Set.sInter
β€”β€”
alexandrovDiscrete_iff_isClosed πŸ“–mathematicalβ€”AlexandrovDiscrete
IsClosed
Set.sUnion
β€”Function.Surjective.forall
Function.Surjective.image_surjective
compl_surjective
alexandrovDiscrete_iff_nhds πŸ“–mathematicalβ€”AlexandrovDiscrete
nhds
Filter.principal
nhdsKer
Set
Set.instSingletonSet
β€”principal_nhdsKer_singleton
Filter.inf_principal
Set.nonempty_biUnion
Set.inter_iUnionβ‚‚
Set.sUnion_eq_biUnion
Set.mem_sUnion_of_mem
closure_iUnion πŸ“–mathematicalβ€”closure
Set.iUnion
β€”compl_injective
Set.compl_iUnion
interior_iInter
closure_sUnion πŸ“–mathematicalβ€”closure
Set.sUnion
Set.iUnion
Set
Set.instMembership
β€”Set.sUnion_eq_biUnion
closure_iUnion
gc_nhdsKer_interior πŸ“–mathematicalβ€”GaloisConnection
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
nhdsKer
interior
β€”β€”
interior_iInter πŸ“–mathematicalβ€”interior
Set.iInter
β€”HasSubset.Subset.antisymm'
Set.instAntisymmSubset
interior_maximal
Set.iInter_mono
interior_subset
isOpen_iInter
isOpen_interior
Set.subset_iInter
interior_mono
Set.iInter_subset
interior_sInter πŸ“–mathematicalβ€”interior
Set.sInter
Set.iInter
Set
Set.instMembership
β€”Set.sInter_eq_biInter
interior_iInter
isClopen_iInter πŸ“–mathematicalIsClopenSet.iInterβ€”isClosed_iInter
isOpen_iInter
isClopen_iInterβ‚‚ πŸ“–mathematicalIsClopenSet.iInterβ€”isClopen_iInter
isClopen_iUnion πŸ“–mathematicalIsClopenSet.iUnionβ€”isClosed_iUnion
isOpen_iUnion
isClopen_iUnionβ‚‚ πŸ“–mathematicalIsClopenSet.iUnionβ€”isClopen_iUnion
isClopen_sInter πŸ“–mathematicalIsClopenSet.sInterβ€”isClosed_sInter
isOpen_sInter
isClopen_sUnion πŸ“–mathematicalIsClopenSet.sUnionβ€”isClosed_sUnion
isOpen_sUnion
isClosed_iUnion πŸ“–mathematicalIsClosedSet.iUnionβ€”isClosed_sUnion
Set.forall_mem_range
isClosed_iUnionβ‚‚ πŸ“–mathematicalIsClosedSet.iUnionβ€”isClosed_iUnion
isClosed_sUnion πŸ“–mathematicalIsClosedSet.sUnionβ€”alexandrovDiscrete_iff_isClosed
isOpen_iInter πŸ“–mathematicalIsOpenSet.iInterβ€”isOpen_sInter
Set.forall_mem_range
isOpen_iInterβ‚‚ πŸ“–mathematicalIsOpenSet.iInterβ€”isOpen_iInter
isOpen_iff_forall_specializes πŸ“–mathematicalβ€”IsOpen
Set
Set.instMembership
β€”forall_swap
isOpen_nhdsKer πŸ“–mathematicalβ€”IsOpen
nhdsKer
β€”nhdsKer_def
isOpen_sInter
isOpen_sInter πŸ“–mathematicalIsOpenSet.sInterβ€”AlexandrovDiscrete.isOpen_sInter
nhdsKer_eq_iff_isOpen πŸ“–mathematicalβ€”nhdsKer
IsOpen
β€”isOpen_nhdsKer
IsOpen.nhdsKer_eq
nhdsKer_mem_nhdsSet πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhdsSet
nhdsKer
β€”IsOpen.mem_nhdsSet
isOpen_nhdsKer
subset_nhdsKer
nhdsKer_singleton_subset_iff_mem_nhds πŸ“–mathematicalβ€”Set
Set.instHasSubset
nhdsKer
Set.instSingletonSet
Filter
Filter.instMembership
nhds
β€”nhdsSet_singleton
nhdsKer_subset_iff πŸ“–mathematicalβ€”Set
Set.instHasSubset
nhdsKer
IsOpen
β€”isOpen_nhdsKer
subset_nhdsKer
HasSubset.Subset.trans
Set.instIsTransSubset
nhdsKer_minimal
nhdsKer_subset_iff_isOpen πŸ“–mathematicalβ€”Set
Set.instHasSubset
nhdsKer
IsOpen
β€”nhdsKer_eq_iff_isOpen
nhdsKer_subset_iff_mem_nhdsSet πŸ“–mathematicalβ€”Set
Set.instHasSubset
nhdsKer
Filter
Filter.instMembership
nhdsSet
β€”nhdsKer_subset_iff
mem_nhdsSet_iff_exists
nhdsSet_basis_nhdsKer πŸ“–mathematicalβ€”Filter.HasBasis
nhdsSet
nhdsKer
β€”Filter.hasBasis_principal
principal_nhdsKer
nhds_basis_nhdsKer_singleton πŸ“–mathematicalβ€”Filter.HasBasis
nhds
nhdsKer
Set
Set.instSingletonSet
β€”Filter.hasBasis_principal
principal_nhdsKer_singleton
principal_nhdsKer πŸ“–mathematicalβ€”Filter.principal
nhdsKer
nhdsSet
β€”nhdsSet_nhdsKer
IsOpen.nhdsSet_eq
isOpen_nhdsKer
principal_nhdsKer_singleton πŸ“–mathematicalβ€”Filter.principal
nhdsKer
Set
Set.instSingletonSet
nhds
β€”principal_nhdsKer
nhdsSet_singleton

---

← Back to Index