Documentation Verification Report

Algebra

πŸ“ Source: Mathlib/Topology/Algebra/Algebra.lean

Statistics

MetricCount
Definitionselemental, instCommSemiringSubtypeMemSubalgebraOfT2Space, ContinuousAlgHom, apply, codRestrict, comp, copy, fst, id, instFunLike, instMonoid, instMul, instOne, prod, prodEquiv, prodMap, rangeRestrict, restrictScalars, snd, toAlgHom, toAlgHomMonoidHom, toContinuousLinearMap, commRingTopologicalClosure, commSemiringTopologicalClosure, topologicalClosure, valA, algebraMapCLM, instCommRingSubtypeMemSubalgebraElementalOfT2Space, Β«term_β†’A[_]_Β»
29
TheoremsinstCompleteSpaceSubtypeMemSubalgebra, isClosed, isClosedEmbedding_coe, le_centralizer_centralizer, le_iff_mem, le_of_mem, self_mem, coe_codRestrict, coe_codRestrict_apply, coe_coe, coe_comp, coe_comp', coe_copy, coe_eq_id, coe_fst, coe_fst', coe_id, coe_id', coe_inj, coe_mk, coe_mk', coe_mul, coe_pow, coe_prod, coe_prodMap, coe_prodMap', coe_rangeRestrict, coe_restrictScalars, coe_restrictScalars', coe_snd, coe_snd', coe_toContinuousLinearMap, comp_apply, comp_assoc, comp_id, cont, continuous, copy_eq, eqOn_closure_adjoin, ext, ext_iff, ext_on, ext_ring, ext_ring_iff, fst_comp_prod, fst_prod_snd, id_apply, id_comp, instAlgHomClass, instCompleteSpaceSubtypeMemSubalgebraEqualizerOfT2SpaceOfContinuousMapClass, instContinuousMapClass, map_add, map_neg, map_smul, map_smul_of_tower, map_sub, map_sum, map_zero, mul_apply, mul_def, one_apply, one_def, prodEquiv_apply, prod_apply, snd_comp_prod, toAlgHomMonoidHom_apply, toAlgHom_eq_coe, uniformContinuous, toSpanSingleton_one_eq_algebraMapCLM, topologicalClosure_map_subalgebra, instContinuousSMul, coe_valA, coe_valA', continuousSMul, isClosed_topologicalClosure, le_topologicalClosure, map_topologicalClosure_le, topologicalClosure_adjoin_le_centralizer_centralizer, topologicalClosure_coe, topologicalClosure_comap_homeomorph, topologicalClosure_map, topologicalClosure_map_le, topologicalClosure_minimal, valA_apply, range_valA, algebraMapCLM_apply, algebraMapCLM_coe, algebraMapCLM_toLinearMap, coe_algebraMapCLM, continuousSMul_of_algebraMap, continuous_algebraMap, continuous_algebraMap_iff_smul, instIsTopologicalSemiringSubtypeMemSubalgebra, toLinearMap_algebraMapCLM
94
Total123

Algebra

Definitions

NameCategoryTheorems
elemental πŸ“–CompOp
7 mathmath: elemental.le_iff_mem, elemental.isClosedEmbedding_coe, elemental.instCompleteSpaceSubtypeMemSubalgebra, elemental.le_centralizer_centralizer, elemental.self_mem, elemental.isClosed, elemental.le_of_mem

Algebra.elemental

Definitions

NameCategoryTheorems
instCommSemiringSubtypeMemSubalgebraOfT2Space πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instCompleteSpaceSubtypeMemSubalgebra πŸ“–mathematicalβ€”CompleteSpace
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Algebra.elemental
UniformSpace.toTopologicalSpace
instUniformSpaceSubtype
β€”IsClosed.completeSpace_coe
isClosed_closure
isClosed πŸ“–mathematicalβ€”IsClosed
SetLike.coe
Subalgebra
Subalgebra.instSetLike
Algebra.elemental
β€”Subalgebra.isClosed_topologicalClosure
isClosedEmbedding_coe πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Algebra.elemental
instTopologicalSpaceSubtype
β€”Subtype.coe_injective
Subtype.range_coe_subtype
isClosed
le_centralizer_centralizer πŸ“–mathematicalβ€”Subalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Algebra.elemental
Subalgebra.centralizer
SetLike.coe
Subalgebra.instSetLike
Set
Set.instSingletonSet
β€”Subalgebra.topologicalClosure_adjoin_le_centralizer_centralizer
le_iff_mem πŸ“–mathematicalβ€”Subalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Algebra.elemental
SetLike.instMembership
Subalgebra.instSetLike
β€”self_mem
le_of_mem
le_of_mem πŸ“–mathematicalSubalgebra
SetLike.instMembership
Subalgebra.instSetLike
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Algebra.elemental
β€”Subalgebra.topologicalClosure_minimal
Algebra.adjoin_le
self_mem πŸ“–mathematicalβ€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Algebra.elemental
β€”Subalgebra.le_topologicalClosure
Algebra.self_mem_adjoin_singleton

ContinuousAlgHom

Definitions

NameCategoryTheorems
codRestrict πŸ“–CompOp
2 mathmath: coe_codRestrict, coe_codRestrict_apply
comp πŸ“–CompOp
11 mathmath: comp_id, id_comp, comp_apply, comp_assoc, mul_def, ContinuousAlgEquiv.coe_comp_coe_symm, coe_comp, fst_comp_prod, coe_comp', snd_comp_prod, ContinuousAlgEquiv.coe_symm_comp_coe
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
fst πŸ“–CompOp
4 mathmath: coe_fst, coe_fst', fst_comp_prod, fst_prod_snd
id πŸ“–CompOp
11 mathmath: comp_id, coe_id, coe_eq_id, id_comp, coe_id', ContinuousAlgEquiv.coe_comp_coe_symm, ContinuousAlgEquiv.coe_refl, id_apply, fst_prod_snd, one_def, ContinuousAlgEquiv.coe_symm_comp_coe
instFunLike πŸ“–CompOp
49 mathmath: coe_mk', coe_fst, toAlgHomMonoidHom_apply, map_smul_of_tower, coe_id, coe_eq_id, coe_mul, map_smul, coe_toContinuousLinearMap, comp_apply, coe_id', uniformContinuous, map_sum, Subalgebra.valA_apply, instContinuousMapClass, coe_restrictScalars, coe_prod, continuous, mul_apply, ext_ring_iff, coe_prodMap, map_add, Subalgebra.coe_valA, Submodule.range_valA, coe_inj, coe_fst', Subalgebra.map_topologicalClosure_le, coe_pow, id_apply, ext_iff, coe_prodMap', coe_rangeRestrict, coe_comp, coe_coe, ContinuousAlgEquiv.coe_coe, coe_snd', coe_restrictScalars', ContinuousAlgEquiv.coe_apply, one_apply, coe_comp', map_zero, map_sub, prod_apply, Subalgebra.coe_valA', toAlgHom_eq_coe, coe_mk, coe_snd, instAlgHomClass, map_neg
instMonoid πŸ“–CompOp
2 mathmath: toAlgHomMonoidHom_apply, coe_pow
instMul πŸ“–CompOp
3 mathmath: coe_mul, mul_def, mul_apply
instOne πŸ“–CompOp
2 mathmath: one_apply, one_def
prod πŸ“–CompOp
6 mathmath: coe_prod, prodEquiv_apply, fst_comp_prod, fst_prod_snd, prod_apply, snd_comp_prod
prodEquiv πŸ“–CompOp
1 mathmath: prodEquiv_apply
prodMap πŸ“–CompOp
2 mathmath: coe_prodMap, coe_prodMap'
rangeRestrict πŸ“–CompOp
1 mathmath: coe_rangeRestrict
restrictScalars πŸ“–CompOp
2 mathmath: coe_restrictScalars, coe_restrictScalars'
snd πŸ“–CompOp
4 mathmath: fst_prod_snd, coe_snd', snd_comp_prod, coe_snd
toAlgHom πŸ“–CompOp
4 mathmath: Subalgebra.topologicalClosure_map, Subalgebra.map_topologicalClosure_le, cont, toAlgHom_eq_coe
toAlgHomMonoidHom πŸ“–CompOp
1 mathmath: toAlgHomMonoidHom_apply
toContinuousLinearMap πŸ“–CompOp
2 mathmath: ContinuousAlgEquiv.toContinuousLinearMap_toContinuousLinearEquiv_eq, coe_toContinuousLinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
coe_codRestrict πŸ“–mathematicalSubalgebra
SetLike.instMembership
Subalgebra.instSetLike
DFunLike.coe
ContinuousAlgHom
instFunLike
AlgHomClass.toAlgHom
Subalgebra.toSemiring
Subalgebra.algebra
instTopologicalSpaceSubtype
instAlgHomClass
codRestrict
AlgHom.codRestrict
β€”instAlgHomClass
coe_codRestrict_apply πŸ“–mathematicalSubalgebra
SetLike.instMembership
Subalgebra.instSetLike
DFunLike.coe
ContinuousAlgHom
instFunLike
Subalgebra.toSemiring
instTopologicalSpaceSubtype
Subalgebra.algebra
codRestrict
β€”β€”
coe_coe πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
AlgHom.funLike
AlgHomClass.toAlgHom
ContinuousAlgHom
instFunLike
instAlgHomClass
β€”instAlgHomClass
coe_comp πŸ“–mathematicalβ€”AlgHomClass.toAlgHom
ContinuousAlgHom
instFunLike
instAlgHomClass
comp
AlgHom.comp
β€”instAlgHomClass
coe_comp' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
instFunLike
comp
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
ContinuousAlgHom
instFunLike
copyβ€”β€”
coe_eq_id πŸ“–mathematicalβ€”AlgHomClass.toAlgHom
ContinuousAlgHom
instFunLike
instAlgHomClass
AlgHom.id
id
β€”instAlgHomClass
coe_id
coe_fst πŸ“–mathematicalβ€”AlgHomClass.toAlgHom
Prod.instSemiring
Prod.algebra
ContinuousAlgHom
instTopologicalSpaceProd
instFunLike
instAlgHomClass
fst
AlgHom.fst
β€”instAlgHomClass
coe_fst' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
Prod.instSemiring
instTopologicalSpaceProd
Prod.algebra
instFunLike
fst
β€”β€”
coe_id πŸ“–mathematicalβ€”AlgHomClass.toAlgHom
ContinuousAlgHom
instFunLike
instAlgHomClass
id
AlgHom.id
β€”instAlgHomClass
coe_id' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
instFunLike
id
β€”β€”
coe_inj πŸ“–mathematicalβ€”AlgHomClass.toAlgHom
ContinuousAlgHom
instFunLike
instAlgHomClass
β€”instAlgHomClass
coe_mk πŸ“–mathematicalContinuous
OneHom.toFun
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
MonoidHom.toOneHom
RingHom.toMonoidHom
AlgHom.toRingHom
AlgHomClass.toAlgHom
ContinuousAlgHom
instFunLike
instAlgHomClass
β€”instAlgHomClass
coe_mk' πŸ“–mathematicalContinuous
OneHom.toFun
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
MonoidHom.toOneHom
RingHom.toMonoidHom
AlgHom.toRingHom
DFunLike.coe
ContinuousAlgHom
instFunLike
AlgHom
AlgHom.funLike
β€”β€”
coe_mul πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
instFunLike
instMul
β€”β€”
coe_pow πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
instFunLike
Monoid.toNatPow
instMonoid
Nat.iterate
β€”hom_coe_pow
coe_prod πŸ“–mathematicalβ€”AlgHomClass.toAlgHom
Prod.instSemiring
Prod.algebra
ContinuousAlgHom
instTopologicalSpaceProd
instFunLike
instAlgHomClass
prod
AlgHom.prod
β€”instAlgHomClass
coe_prodMap πŸ“–mathematicalβ€”AlgHomClass.toAlgHom
Prod.instSemiring
Prod.algebra
ContinuousAlgHom
instTopologicalSpaceProd
instFunLike
instAlgHomClass
prodMap
AlgHom.prodMap
β€”instAlgHomClass
coe_prodMap' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
Prod.instSemiring
instTopologicalSpaceProd
Prod.algebra
instFunLike
prodMap
β€”β€”
coe_rangeRestrict πŸ“–mathematicalβ€”AlgHomClass.toAlgHom
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
AlgHom.range
ContinuousAlgHom
instFunLike
instAlgHomClass
Subalgebra.toSemiring
Subalgebra.algebra
instTopologicalSpaceSubtype
rangeRestrict
AlgHom.rangeRestrict
β€”instAlgHomClass
coe_restrictScalars πŸ“–mathematicalβ€”AlgHomClass.toAlgHom
Ring.toSemiring
ContinuousAlgHom
instFunLike
instAlgHomClass
restrictScalars
AlgHom.restrictScalars
β€”instAlgHomClass
coe_restrictScalars' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
Ring.toSemiring
instFunLike
restrictScalars
β€”β€”
coe_snd πŸ“–mathematicalβ€”AlgHomClass.toAlgHom
Prod.instSemiring
Prod.algebra
ContinuousAlgHom
instTopologicalSpaceProd
instFunLike
instAlgHomClass
snd
AlgHom.snd
β€”instAlgHomClass
coe_snd' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
Prod.instSemiring
instTopologicalSpaceProd
Prod.algebra
instFunLike
snd
β€”β€”
coe_toContinuousLinearMap πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
ContinuousLinearMap.funLike
toContinuousLinearMap
ContinuousAlgHom
instFunLike
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
cont πŸ“–mathematicalβ€”Continuous
OneHom.toFun
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
MonoidHom.toOneHom
RingHom.toMonoidHom
AlgHom.toRingHom
toAlgHom
β€”β€”
continuous πŸ“–mathematicalβ€”Continuous
DFunLike.coe
ContinuousAlgHom
instFunLike
β€”cont
copy_eq πŸ“–mathematicalDFunLike.coe
ContinuousAlgHom
instFunLike
copyβ€”DFunLike.ext'
eqOn_closure_adjoin πŸ“–mathematicalSet.EqOn
DFunLike.coe
ContinuousAlgHom
instFunLike
closure
SetLike.coe
Subalgebra
Subalgebra.instSetLike
Algebra.adjoin
β€”Set.EqOn.closure
AlgHom.eqOn_adjoin_iff
continuous
ext πŸ“–β€”DFunLike.coe
ContinuousAlgHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
instFunLike
β€”ext
ext_on πŸ“–β€”Dense
SetLike.coe
Subalgebra
Subalgebra.instSetLike
Algebra.adjoin
Set.EqOn
DFunLike.coe
ContinuousAlgHom
instFunLike
β€”β€”ext
eqOn_closure_adjoin
ext_ring πŸ“–β€”β€”β€”β€”instAlgHomClass
Algebra.ext_id
ext_ring_iff πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
CommSemiring.toSemiring
Algebra.id
instFunLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”ext_ring
fst_comp_prod πŸ“–mathematicalβ€”comp
Prod.instSemiring
instTopologicalSpaceProd
Prod.algebra
fst
prod
β€”ext
fst_prod_snd πŸ“–mathematicalβ€”prod
Prod.instSemiring
instTopologicalSpaceProd
Prod.algebra
fst
snd
id
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
instFunLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
instAlgHomClass πŸ“–mathematicalβ€”AlgHomClass
ContinuousAlgHom
instFunLike
β€”map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
AlgHom.commutes
instCompleteSpaceSubtypeMemSubalgebraEqualizerOfT2SpaceOfContinuousMapClass πŸ“–mathematicalβ€”CompleteSpace
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
AlgHom.equalizer
instUniformSpaceSubtype
β€”IsClosed.completeSpace_coe
isClosed_eq
ContinuousMapClass.map_continuous
instContinuousMapClass πŸ“–mathematicalβ€”ContinuousMapClass
ContinuousAlgHom
instFunLike
β€”cont
map_add πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
instFunLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
instAlgHomClass
map_neg πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
Ring.toSemiring
instFunLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
instAlgHomClass
map_smul πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
instFunLike
Algebra.toSMul
β€”map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
instAlgHomClass
map_smul_of_tower πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
instFunLike
β€”map_smul
map_sub πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
Ring.toSemiring
instFunLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
instAlgHomClass
map_sum πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
instFunLike
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
instAlgHomClass
map_zero πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
instFunLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
instAlgHomClass
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
instFunLike
instMul
β€”β€”
mul_def πŸ“–mathematicalβ€”ContinuousAlgHom
instMul
comp
β€”β€”
one_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
instFunLike
instOne
β€”β€”
one_def πŸ“–mathematicalβ€”ContinuousAlgHom
instOne
id
β€”β€”
prodEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ContinuousAlgHom
Prod.instSemiring
instTopologicalSpaceProd
Prod.algebra
EquivLike.toFunLike
Equiv.instEquivLike
prodEquiv
prod
β€”β€”
prod_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
Prod.instSemiring
instTopologicalSpaceProd
Prod.algebra
instFunLike
prod
β€”β€”
snd_comp_prod πŸ“–mathematicalβ€”comp
Prod.instSemiring
instTopologicalSpaceProd
Prod.algebra
snd
prod
β€”ext
toAlgHomMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
ContinuousAlgHom
AlgHom
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
AlgHom.End
MonoidHom.instFunLike
toAlgHomMonoidHom
AlgHomClass.toAlgHom
instFunLike
instAlgHomClass
β€”β€”
toAlgHom_eq_coe πŸ“–mathematicalβ€”toAlgHom
AlgHomClass.toAlgHom
ContinuousAlgHom
instFunLike
instAlgHomClass
β€”β€”
uniformContinuous πŸ“–mathematicalβ€”UniformContinuous
DFunLike.coe
ContinuousAlgHom
Ring.toSemiring
UniformSpace.toTopologicalSpace
instFunLike
β€”uniformContinuous_addMonoidHom_of_continuous
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
instAlgHomClass
continuous

ContinuousAlgHom.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”

ContinuousLinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
toSpanSingleton_one_eq_algebraMapCLM πŸ“–mathematicalβ€”toSpanSingleton
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
algebraMapCLM
β€”ext_ring
one_smul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass

DenseRange

Theorems

NameKindAssumesProvesValidatesDepends On
topologicalClosure_map_subalgebra πŸ“–mathematicalDenseRange
DFunLike.coe
ContinuousAlgHom
ContinuousAlgHom.instFunLike
Subalgebra.topologicalClosure
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Subalgebra.map
AlgHomClass.toAlgHom
ContinuousAlgHom.instAlgHomClass
β€”ContinuousAlgHom.instAlgHomClass
SetLike.ext'_iff
Set.image_congr
dense_image
ContinuousAlgHom.continuous

DiscreteTopology

Theorems

NameKindAssumesProvesValidatesDepends On
instContinuousSMul πŸ“–mathematicalβ€”ContinuousSMul
Algebra.toSMul
β€”continuousSMul_of_algebraMap
IsTopologicalSemiring.toContinuousMul
continuous_of_discreteTopology

Subalgebra

Definitions

NameCategoryTheorems
commRingTopologicalClosure πŸ“–CompOpβ€”
commSemiringTopologicalClosure πŸ“–CompOpβ€”
topologicalClosure πŸ“–CompOp
21 mathmath: ContinuousMap.abs_mem_subalgebra_closure, topologicalClosure_map, topologicalClosure_coe, ContinuousMap.continuousMap_mem_subalgebra_closure_of_separatesPoints, topologicalClosure_minimal, continuousMap_mem_polynomialFunctions_closure, topologicalClosure_map_le, ContinuousMap.sup_mem_subalgebra_closure, ContinuousMap.inf_mem_subalgebra_closure, ContinuousMap.subalgebra_topologicalClosure_eq_top_of_separatesPoints, le_topologicalClosure, topologicalClosure_star_comm, map_topologicalClosure_le, ContinuousMap.comp_attachBound_mem_closure, polynomialFunctions.topologicalClosure, polynomialFunctions_closure_eq_top', topologicalClosure_comap_homeomorph, polynomialFunctions_closure_eq_top, isClosed_topologicalClosure, StarSubalgebra.topologicalClosure_toSubalgebra_comm, topologicalClosure_adjoin_le_centralizer_centralizer
valA πŸ“–CompOp
4 mathmath: valA_apply, coe_valA, Submodule.range_valA, coe_valA'

Theorems

NameKindAssumesProvesValidatesDepends On
coe_valA πŸ“–mathematicalβ€”RingHomClass.toRingHom
ContinuousAlgHom
Subalgebra
SetLike.instMembership
instSetLike
toSemiring
instTopologicalSpaceSubtype
algebra
Subsemiring
Semiring.toNonAssocSemiring
Subsemiring.instSetLike
toSubsemiring
ContinuousAlgHom.instFunLike
Subsemiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
Subsemiring.toSemiring
ContinuousAlgHom.instAlgHomClass
valA
Subsemiring.subtype
β€”AlgHomClass.toRingHomClass
ContinuousAlgHom.instAlgHomClass
coe_valA' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
Subalgebra
SetLike.instMembership
instSetLike
toSemiring
instTopologicalSpaceSubtype
algebra
ContinuousAlgHom.instFunLike
valA
RingHom
Subsemiring
Semiring.toNonAssocSemiring
Subsemiring.instSetLike
toSubsemiring
Subsemiring.toNonAssocSemiring
RingHom.instFunLike
Subsemiring.subtype
β€”β€”
continuousSMul πŸ“–mathematicalβ€”ContinuousSMul
Subalgebra
SetLike.instMembership
instSetLike
instSMulSubtypeMem
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
instTopologicalSpaceSubtype
β€”Subsemiring.continuousSMul
isClosed_topologicalClosure πŸ“–mathematicalβ€”IsClosed
SetLike.coe
Subalgebra
instSetLike
topologicalClosure
β€”isClosed_closure
le_topologicalClosure πŸ“–mathematicalβ€”Subalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosure
β€”subset_closure
map_topologicalClosure_le πŸ“–mathematicalβ€”Subalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
AlgHomClass.toAlgHom
ContinuousAlgHom
ContinuousAlgHom.instFunLike
ContinuousAlgHom.instAlgHomClass
topologicalClosure
ContinuousAlgHom.toAlgHom
β€”image_closure_subset_closure_image
ContinuousAlgHom.instAlgHomClass
ContinuousAlgHom.continuous
topologicalClosure_adjoin_le_centralizer_centralizer πŸ“–mathematicalβ€”Subalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosure
Algebra.adjoin
centralizer
SetLike.coe
instSetLike
β€”topologicalClosure_minimal
Algebra.adjoin_le_centralizer_centralizer
Set.isClosed_centralizer
IsTopologicalSemiring.toContinuousMul
topologicalClosure_coe πŸ“–mathematicalβ€”SetLike.coe
Subalgebra
instSetLike
topologicalClosure
closure
β€”β€”
topologicalClosure_comap_homeomorph πŸ“–mathematicalDFunLike.coe
AlgHom
Ring.toSemiring
AlgHom.funLike
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
comap
topologicalClosure
IsTopologicalRing.toIsTopologicalSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”SetLike.ext'
IsTopologicalRing.toIsTopologicalSemiring
Homeomorph.preimage_closure
topologicalClosure_map πŸ“–mathematicalIsClosedMap
DFunLike.coe
ContinuousAlgHom
ContinuousAlgHom.instFunLike
topologicalClosure
map
ContinuousAlgHom.toAlgHom
β€”SetLike.coe_injective
IsClosedMap.closure_image_eq_of_continuous
ContinuousAlgHom.continuous
topologicalClosure_map_le πŸ“–mathematicalIsClosedMap
DFunLike.coe
AlgHom
AlgHom.funLike
Subalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosure
map
β€”IsClosedMap.closure_image_subset
topologicalClosure_minimal πŸ“–mathematicalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosureβ€”closure_minimal
valA_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
Subalgebra
SetLike.instMembership
instSetLike
toSemiring
instTopologicalSpaceSubtype
algebra
ContinuousAlgHom.instFunLike
valA
β€”β€”

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
range_valA πŸ“–mathematicalβ€”AlgHom.range
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.toSemiring
Subalgebra.algebra
AlgHomClass.toAlgHom
ContinuousAlgHom
instTopologicalSpaceSubtype
ContinuousAlgHom.instFunLike
ContinuousAlgHom.instAlgHomClass
Subalgebra.valA
β€”Subalgebra.range_val

(root)

Definitions

NameCategoryTheorems
ContinuousAlgHom πŸ“–CompData
53 mathmath: ContinuousAlgHom.coe_mk', ContinuousAlgHom.coe_fst, ContinuousAlgHom.toAlgHomMonoidHom_apply, ContinuousAlgHom.map_smul_of_tower, ContinuousAlgHom.coe_id, ContinuousAlgHom.coe_eq_id, ContinuousAlgHom.coe_mul, ContinuousAlgHom.map_smul, ContinuousAlgHom.coe_toContinuousLinearMap, ContinuousAlgHom.comp_apply, ContinuousAlgHom.coe_id', ContinuousAlgHom.uniformContinuous, ContinuousAlgHom.map_sum, Subalgebra.valA_apply, ContinuousAlgHom.mul_def, ContinuousAlgHom.instContinuousMapClass, ContinuousAlgEquiv.coe_injective, ContinuousAlgHom.coe_restrictScalars, ContinuousAlgHom.coe_prod, ContinuousAlgHom.continuous, ContinuousAlgHom.mul_apply, ContinuousAlgHom.ext_ring_iff, ContinuousAlgHom.coe_prodMap, ContinuousAlgHom.map_add, Subalgebra.coe_valA, Submodule.range_valA, ContinuousAlgHom.coe_inj, ContinuousAlgHom.coe_fst', ContinuousAlgHom.prodEquiv_apply, Subalgebra.map_topologicalClosure_le, ContinuousAlgHom.coe_pow, ContinuousAlgHom.id_apply, ContinuousAlgHom.ext_iff, ContinuousAlgHom.coe_prodMap', ContinuousAlgHom.coe_rangeRestrict, ContinuousAlgHom.coe_comp, ContinuousAlgHom.coe_coe, ContinuousAlgEquiv.coe_coe, ContinuousAlgHom.coe_snd', ContinuousAlgHom.coe_restrictScalars', ContinuousAlgEquiv.coe_apply, ContinuousAlgHom.one_apply, ContinuousAlgHom.coe_comp', ContinuousAlgHom.map_zero, ContinuousAlgHom.map_sub, ContinuousAlgHom.prod_apply, Subalgebra.coe_valA', ContinuousAlgHom.one_def, ContinuousAlgHom.toAlgHom_eq_coe, ContinuousAlgHom.coe_mk, ContinuousAlgHom.coe_snd, ContinuousAlgHom.instAlgHomClass, ContinuousAlgHom.map_neg
algebraMapCLM πŸ“–CompOp
6 mathmath: algebraMapCLM_coe, coe_algebraMapCLM, toLinearMap_algebraMapCLM, algebraMapCLM_apply, ContinuousLinearMap.toSpanSingleton_one_eq_algebraMapCLM, algebraMapCLM_toLinearMap
instCommRingSubtypeMemSubalgebraElementalOfT2Space πŸ“–CompOpβ€”
Β«term_β†’A[_]_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMapCLM_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Algebra.toModule
ContinuousLinearMap.funLike
algebraMapCLM
RingHom
RingHom.instFunLike
algebraMap
β€”β€”
algebraMapCLM_coe πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Algebra.toModule
ContinuousLinearMap.funLike
algebraMapCLM
RingHom
RingHom.instFunLike
algebraMap
β€”coe_algebraMapCLM
algebraMapCLM_toLinearMap πŸ“–mathematicalβ€”ContinuousLinearMap.toLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Algebra.toModule
algebraMapCLM
Algebra.linearMap
β€”toLinearMap_algebraMapCLM
coe_algebraMapCLM πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Algebra.toModule
ContinuousLinearMap.funLike
algebraMapCLM
RingHom
RingHom.instFunLike
algebraMap
β€”β€”
continuousSMul_of_algebraMap πŸ“–mathematicalContinuous
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
ContinuousSMul
Algebra.toSMul
β€”continuous_algebraMap_iff_smul
continuous_algebraMap πŸ“–mathematicalβ€”Continuous
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”Algebra.algebraMap_eq_smul_one'
Continuous.smul
continuous_id'
continuous_const
continuous_algebraMap_iff_smul πŸ“–mathematicalβ€”Continuous
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
instTopologicalSpaceProd
Algebra.toSMul
β€”Algebra.smul_def
Continuous.mul
Continuous.comp
continuous_fst
continuous_snd
continuous_algebraMap
instIsTopologicalSemiringSubtypeMemSubalgebra πŸ“–mathematicalβ€”IsTopologicalSemiring
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
instTopologicalSpaceSubtype
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Subalgebra.toSemiring
β€”Subsemiring.topologicalSemiring
toLinearMap_algebraMapCLM πŸ“–mathematicalβ€”ContinuousLinearMap.toLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Algebra.toModule
algebraMapCLM
Algebra.linearMap
β€”β€”

---

← Back to Index