Documentation Verification Report

Equiv

πŸ“ Source: Mathlib/Topology/Algebra/Algebra/Equiv.lean

Statistics

MetricCount
Definitionscast, equivLike, instCoeContinuousLinearEquivId, refl, toAlgEquiv, toContinuousAlgHom, toContinuousLinearEquiv, toHomeomorph, trans, ContinuousAlgEquivClass, Β«term_≃A[_]_Β»
11
TheoremsisUniformEmbedding, apply_symm_apply, cast_apply, cast_symm_apply, coe_apply, coe_coe, coe_comp_coe_symm, coe_inj, coe_injective, coe_mk, coe_refl, coe_refl', coe_symm_comp_coe, coe_toAlgEquiv, comp_coe, comp_continuous_iff, comp_continuous_iff', continuous, continuousAlgEquivClass, continuousAt, continuousOn, continuousWithinAt, continuous_invFun, continuous_toFun, eq_symm_apply, ext, ext_iff, image_closure, image_eq_preimage_symm, image_symm_eq_preimage, image_symm_image, isClosed_image, isOpenMap, isUniformEmbedding, map_eq_zero_iff, map_nhds_eq, preimage_closure, preimage_symm_preimage, refl_apply, refl_symm, refl_toContinuousLinearEquiv, self_comp_symm, surjective, symm_apply_apply, symm_apply_eq, symm_bijective, symm_comp_self, symm_image_image, symm_map_nhds_eq, symm_preimage_preimage, symm_symm, symm_symm_apply, symm_toAlgEquiv, symm_toHomeomorph, symm_trans_apply, toAlgEquiv_injective, toContinuousLinearEquiv_apply, toContinuousLinearEquiv_symm, toContinuousLinearEquiv_toLinearEquiv_eq, toContinuousLinearMap_toContinuousLinearEquiv_eq, trans_apply, trans_toAlgEquiv, trans_toContinuousLinearEquiv, toAlgEquivClass, toHomeomorphClass
65
Total76

AlgEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isUniformEmbedding πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
DFunLike.coe
AlgEquiv
Ring.toSemiring
instFunLike
symm
IsUniformEmbeddingβ€”ContinuousAlgEquiv.isUniformEmbedding

ContinuousAlgEquiv

Definitions

NameCategoryTheorems
cast πŸ“–CompOp
2 mathmath: cast_symm_apply, cast_apply
equivLike πŸ“–CompOp
50 mathmath: map_nhds_eq, symm_apply_eq, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, continuousOn, ContinuousLinearEquiv.conjContinuousAlgEquiv_apply, continuous, symm_trans_apply, Rat.HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, symm_map_nhds_eq, toContinuousLinearEquiv_apply, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, ext_iff, continuousWithinAt, isOpenMap, comp_continuous_iff, image_closure, cast_symm_apply, isClosed_image, symm_comp_self, PadicInt.coe_adicCompletionIntegersEquiv_apply, image_eq_preimage_symm, coe_toAlgEquiv, trans_apply, symm_symm_apply, symm_apply_apply, symm_image_image, eq_symm_apply, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, refl_apply, continuousAlgEquivClass, image_symm_eq_preimage, self_comp_symm, map_eq_zero_iff, comp_coe, coe_coe, preimage_symm_preimage, cast_apply, surjective, comp_continuous_iff', apply_symm_apply, preimage_closure, coe_apply, image_symm_image, continuousAt, coe_mk, symm_preimage_preimage, isUniformEmbedding, coe_refl', ContinuousLinearEquiv.conjContinuousAlgEquiv_apply_apply, ContinuousLinearEquiv.symm_conjContinuousAlgEquiv_apply_apply
instCoeContinuousLinearEquivId πŸ“–CompOpβ€”
refl πŸ“–CompOp
6 mathmath: ContinuousLinearEquiv.conjContinuousAlgEquiv_refl, refl_toContinuousLinearEquiv, refl_symm, coe_refl, refl_apply, coe_refl'
toAlgEquiv πŸ“–CompOp
8 mathmath: continuous_invFun, trans_toAlgEquiv, continuous_toFun, coe_toAlgEquiv, toAlgEquiv_injective, symm_toAlgEquiv, toContinuousLinearEquiv_toLinearEquiv_eq, comp_coe
toContinuousAlgHom πŸ“–CompOp
8 mathmath: toContinuousLinearMap_toContinuousLinearEquiv_eq, coe_inj, coe_injective, coe_comp_coe_symm, coe_refl, coe_coe, coe_apply, coe_symm_comp_coe
toContinuousLinearEquiv πŸ“–CompOp
6 mathmath: toContinuousLinearMap_toContinuousLinearEquiv_eq, toContinuousLinearEquiv_symm, refl_toContinuousLinearEquiv, trans_toContinuousLinearEquiv, toContinuousLinearEquiv_apply, toContinuousLinearEquiv_toLinearEquiv_eq
toHomeomorph πŸ“–CompOp
1 mathmath: symm_toHomeomorph
trans πŸ“–CompOp
6 mathmath: trans_toAlgEquiv, trans_toContinuousLinearEquiv, symm_trans_apply, ContinuousLinearEquiv.conjContinuousAlgEquiv_trans, trans_apply, comp_coe

Theorems

NameKindAssumesProvesValidatesDepends On
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
β€”Equiv.right_inv
cast_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
cast
Equiv
Equiv.instEquivLike
Equiv.cast
β€”β€”
cast_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
cast
Equiv
Equiv.instEquivLike
Equiv.cast
β€”β€”
coe_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
ContinuousAlgHom.instFunLike
toContinuousAlgHom
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
β€”β€”
coe_coe πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgHom
ContinuousAlgHom.instFunLike
toContinuousAlgHom
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
β€”β€”
coe_comp_coe_symm πŸ“–mathematicalβ€”ContinuousAlgHom.comp
toContinuousAlgHom
symm
ContinuousAlgHom.id
β€”ContinuousAlgHom.ext
apply_symm_apply
coe_inj πŸ“–mathematicalβ€”toContinuousAlgHomβ€”coe_injective
coe_injective πŸ“–mathematicalβ€”ContinuousAlgEquiv
ContinuousAlgHom
toContinuousAlgHom
β€”ext
ContinuousAlgHom.ext_iff
coe_mk πŸ“–mathematicalContinuous
Equiv.toFun
AlgEquiv.toEquiv
Equiv.invFun
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
AlgEquiv
AlgEquiv.instFunLike
β€”β€”
coe_refl πŸ“–mathematicalβ€”toContinuousAlgHom
refl
ContinuousAlgHom.id
β€”β€”
coe_refl' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
refl
β€”β€”
coe_symm_comp_coe πŸ“–mathematicalβ€”ContinuousAlgHom.comp
toContinuousAlgHom
symm
ContinuousAlgHom.id
β€”ContinuousAlgHom.ext
symm_apply_apply
coe_toAlgEquiv πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
AlgEquiv.instFunLike
toAlgEquiv
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
β€”β€”
comp_coe πŸ“–mathematicalβ€”AlgHom.comp
AlgEquiv.toAlgHom
toAlgEquiv
AlgHomClass.toAlgHom
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
AlgEquivClass.toAlgHomClass
ContinuousAlgEquivClass.toAlgEquivClass
continuousAlgEquivClass
trans
β€”β€”
comp_continuous_iff πŸ“–mathematicalβ€”Continuous
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
β€”Homeomorph.comp_continuous_iff
comp_continuous_iff' πŸ“–mathematicalβ€”Continuous
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
β€”Homeomorph.comp_continuous_iff'
continuous πŸ“–mathematicalβ€”Continuous
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
β€”continuous_toFun
continuousAlgEquivClass πŸ“–mathematicalβ€”ContinuousAlgEquivClass
ContinuousAlgEquiv
equivLike
β€”AlgEquiv.map_mul'
AlgEquiv.map_add'
AlgEquiv.commutes'
continuous_toFun
continuous_invFun
continuousAt πŸ“–mathematicalβ€”ContinuousAt
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
β€”Continuous.continuousAt
continuous
continuousOn πŸ“–mathematicalβ€”ContinuousOn
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
β€”Continuous.continuousOn
continuous
continuousWithinAt πŸ“–mathematicalβ€”ContinuousWithinAt
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
β€”Continuous.continuousWithinAt
continuous
continuous_invFun πŸ“–mathematicalβ€”Continuous
Equiv.invFun
AlgEquiv.toEquiv
toAlgEquiv
β€”β€”
continuous_toFun πŸ“–mathematicalβ€”Continuous
Equiv.toFun
AlgEquiv.toEquiv
toAlgEquiv
β€”β€”
eq_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
β€”Equiv.eq_symm_apply
ext πŸ“–β€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
β€”β€”toAlgEquiv_injective
AlgEquiv.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
β€”ext
image_closure πŸ“–mathematicalβ€”Set.image
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
closure
β€”Homeomorph.image_closure
image_eq_preimage_symm πŸ“–mathematicalβ€”Set.image
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
Set.preimage
symm
β€”Equiv.image_eq_preimage_symm
image_symm_eq_preimage πŸ“–mathematicalβ€”Set.image
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
Set.preimage
β€”image_eq_preimage_symm
symm_symm
image_symm_image πŸ“–mathematicalβ€”Set.image
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
β€”symm_image_image
isClosed_image πŸ“–mathematicalβ€”IsClosed
Set.image
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
β€”Homeomorph.isClosed_image
isOpenMap πŸ“–mathematicalβ€”IsOpenMap
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
β€”Homeomorph.isOpenMap
isUniformEmbedding πŸ“–mathematicalβ€”IsUniformEmbedding
DFunLike.coe
ContinuousAlgEquiv
Ring.toSemiring
UniformSpace.toTopologicalSpace
EquivLike.toFunLike
equivLike
β€”Equiv.isUniformEmbedding
ContinuousAlgHom.uniformContinuous
map_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”LinearEquiv.map_eq_zero_iff
RingHomInvPair.ids
map_nhds_eq πŸ“–mathematicalβ€”Filter.map
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
nhds
β€”Homeomorph.map_nhds_eq
preimage_closure πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
closure
β€”Homeomorph.preimage_closure
preimage_symm_preimage πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
β€”symm_preimage_preimage
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
refl
β€”β€”
refl_symm πŸ“–mathematicalβ€”symm
refl
β€”β€”
refl_toContinuousLinearEquiv πŸ“–mathematicalβ€”toContinuousLinearEquiv
refl
ContinuousLinearEquiv.refl
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
β€”RingHomInvPair.ids
self_comp_symm πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
β€”apply_symm_apply
surjective πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
β€”AlgEquiv.surjective
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
β€”Equiv.left_inv
symm_apply_eq πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
β€”Equiv.symm_apply_eq
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
ContinuousAlgEquiv
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_comp_self πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
β€”symm_apply_apply
symm_image_image πŸ“–mathematicalβ€”Set.image
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
β€”Equiv.symm_image_image
symm_map_nhds_eq πŸ“–mathematicalβ€”Filter.map
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
nhds
β€”Homeomorph.symm_map_nhds_eq
symm_preimage_preimage πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
β€”Equiv.symm_preimage_preimage
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
symm_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
β€”β€”
symm_toAlgEquiv πŸ“–mathematicalβ€”toAlgEquiv
symm
AlgEquiv.symm
β€”β€”
symm_toHomeomorph πŸ“–mathematicalβ€”toHomeomorph
symm
Homeomorph.symm
β€”β€”
symm_trans_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
symm
trans
β€”β€”
toAlgEquiv_injective πŸ“–mathematicalβ€”ContinuousAlgEquiv
AlgEquiv
toAlgEquiv
β€”β€”
toContinuousLinearEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
toContinuousLinearEquiv
ContinuousAlgEquiv
equivLike
β€”RingHomInvPair.ids
toContinuousLinearEquiv_symm πŸ“–mathematicalβ€”toContinuousLinearEquiv
symm
ContinuousLinearEquiv.symm
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
β€”RingHomInvPair.ids
toContinuousLinearEquiv_toLinearEquiv_eq πŸ“–mathematicalβ€”ContinuousLinearEquiv.toLinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
toContinuousLinearEquiv
AlgEquiv.toLinearEquiv
toAlgEquiv
β€”RingHomInvPair.ids
toContinuousLinearMap_toContinuousLinearEquiv_eq πŸ“–mathematicalβ€”ContinuousLinearEquiv.toContinuousLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
toContinuousLinearEquiv
ContinuousAlgHom.toContinuousLinearMap
toContinuousAlgHom
β€”RingHomInvPair.ids
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAlgEquiv
EquivLike.toFunLike
equivLike
trans
β€”β€”
trans_toAlgEquiv πŸ“–mathematicalβ€”toAlgEquiv
trans
AlgEquiv.trans
β€”β€”
trans_toContinuousLinearEquiv πŸ“–mathematicalβ€”toContinuousLinearEquiv
trans
ContinuousLinearEquiv.trans
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
RingHomCompTriple.ids
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
β€”RingHomInvPair.ids

ContinuousAlgEquivClass

Theorems

NameKindAssumesProvesValidatesDepends On
toAlgEquivClass πŸ“–mathematicalβ€”AlgEquivClassβ€”β€”
toHomeomorphClass πŸ“–mathematicalβ€”HomeomorphClassβ€”β€”

(root)

Definitions

NameCategoryTheorems
ContinuousAlgEquivClass πŸ“–CompData
1 mathmath: ContinuousAlgEquiv.continuousAlgEquivClass
Β«term_≃A[_]_Β» πŸ“–CompOpβ€”

---

← Back to Index