Documentation Verification Report

Limits

📁 Source: Mathlib/Topology/Algebra/Category/ProfiniteGrp/Limits.lean

Statistics

MetricCount
Definitionscone, continuousMulEquivLimittoFiniteQuotientFunctor, diagram, isLimitCone, isoLimittoFiniteQuotientFunctor, proj, toFiniteQuotientFunctor, toLimit, toLimitFun
9
Theoremscone_pt, cone_π_app, denseRange_toLimit, diagram_map, diagram_obj, isIso_toLimit, toLimitFun_continuous, toLimit_injective, toLimit_surjective
9
Total18

ProfiniteGrp

Definitions

NameCategoryTheorems
cone 📖CompOp
2 mathmath: cone_pt, cone_π_app
continuousMulEquivLimittoFiniteQuotientFunctor 📖CompOp—
diagram 📖CompOp
9 mathmath: toLimit_surjective, denseRange_toLimit, cone_pt, cone_π_app, toLimit_injective, toLimitFun_continuous, diagram_map, isIso_toLimit, diagram_obj
isLimitCone 📖CompOp—
isoLimittoFiniteQuotientFunctor 📖CompOp—
proj 📖CompOp
1 mathmath: cone_π_app
toFiniteQuotientFunctor 📖CompOp
2 mathmath: diagram_map, diagram_obj
toLimit 📖CompOp
4 mathmath: toLimit_surjective, denseRange_toLimit, toLimit_injective, isIso_toLimit
toLimitFun 📖CompOp
1 mathmath: toLimitFun_continuous

Theorems

NameKindAssumesProvesValidatesDepends On
cone_pt 📖mathematical—CategoryTheory.Limits.Cone.pt
OpenNormalSubgroup
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
toProfinite
group
Preorder.smallCategory
PartialOrder.toPreorder
OpenNormalSubgroup.instPartialOrderOpenNormalSubgroup
ProfiniteGrp
instCategoryProfiniteGrp
diagram
cone
——
cone_π_app 📖mathematical—CategoryTheory.NatTrans.app
OpenNormalSubgroup
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
toProfinite
group
Preorder.smallCategory
PartialOrder.toPreorder
OpenNormalSubgroup.instPartialOrderOpenNormalSubgroup
ProfiniteGrp
instCategoryProfiniteGrp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
diagram
CategoryTheory.Limits.Cone.π
cone
proj
——
denseRange_toLimit 📖mathematical—DenseRange
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
toProfinite
limit
OpenNormalSubgroup
group
Preorder.smallCategory
PartialOrder.toPreorder
OpenNormalSubgroup.instPartialOrderOpenNormalSubgroup
diagram
instTopologicalSpaceSubtype
Subgroup
Pi.group
CategoryTheory.Functor.obj
ProfiniteGrp
instCategoryProfiniteGrp
SetLike.instMembership
Subgroup.instSetLike
limitConePtAux
Pi.topologicalSpace
DFunLike.coe
ContinuousMonoidHom
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ContinuousMonoidHom.instFunLike
Hom.hom
toLimit
—dense_iff_inter_open
isOpen_pi_iff
Subgroup.normal_iInf_normal
OpenNormalSubgroup.isNormal'
Subgroup.coe_iInf
isOpen_iInter_of_finite
Finite.of_fintype
OpenSubgroup.isOpen'
QuotientGroup.mk'_surjective
iInf_le
Set.mem_of_eq_of_mem
diagram_map 📖mathematical—CategoryTheory.Functor.map
OpenNormalSubgroup
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
toProfinite
group
Preorder.smallCategory
PartialOrder.toPreorder
OpenNormalSubgroup.instPartialOrderOpenNormalSubgroup
ProfiniteGrp
instCategoryProfiniteGrp
diagram
FiniteGrp
FiniteGrp.instCategory
CategoryTheory.forget₂
MonoidHom
GrpCat.carrier
FiniteGrp.toGrp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
GrpCat.str
MonoidHom.instFunLike
FiniteGrp.instConcreteCategoryMonoidHomCarrierToGrp
ContinuousMonoidHom
ContinuousMonoidHom.instFunLike
instConcreteCategoryProfiniteGrpContinuousMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfinite
instHasForget₂FiniteGrpMonoidHomCarrierToGrpContinuousMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfinite
CategoryTheory.Functor.obj
toFiniteQuotientFunctor
——
diagram_obj 📖mathematical—CategoryTheory.Functor.obj
OpenNormalSubgroup
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
toProfinite
group
Preorder.smallCategory
PartialOrder.toPreorder
OpenNormalSubgroup.instPartialOrderOpenNormalSubgroup
ProfiniteGrp
instCategoryProfiniteGrp
diagram
FiniteGrp
FiniteGrp.instCategory
CategoryTheory.forget₂
MonoidHom
GrpCat.carrier
FiniteGrp.toGrp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
GrpCat.str
MonoidHom.instFunLike
FiniteGrp.instConcreteCategoryMonoidHomCarrierToGrp
ContinuousMonoidHom
ContinuousMonoidHom.instFunLike
instConcreteCategoryProfiniteGrpContinuousMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfinite
instHasForget₂FiniteGrpMonoidHomCarrierToGrpContinuousMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfinite
toFiniteQuotientFunctor
——
isIso_toLimit 📖mathematical—CategoryTheory.IsIso
ProfiniteGrp
instCategoryProfiniteGrp
limit
OpenNormalSubgroup
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
toProfinite
group
Preorder.smallCategory
PartialOrder.toPreorder
OpenNormalSubgroup.instPartialOrderOpenNormalSubgroup
diagram
toLimit
—CategoryTheory.ConcreteCategory.isIso_iff_bijective
instReflectsIsomorphismsForgetContinuousMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfinite
toLimit_injective
toLimit_surjective
toLimitFun_continuous 📖mathematical—Continuous
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
toProfinite
limit
OpenNormalSubgroup
group
Preorder.smallCategory
PartialOrder.toPreorder
OpenNormalSubgroup.instPartialOrderOpenNormalSubgroup
diagram
instTopologicalSpaceSubtype
Subgroup
Pi.group
CategoryTheory.Functor.obj
ProfiniteGrp
instCategoryProfiniteGrp
SetLike.instMembership
Subgroup.instSetLike
limitConePtAux
Pi.topologicalSpace
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.instFunLike
toLimitFun
—continuous_induced_rng
continuous_pi
Set.biUnion_preimage_singleton
isOpen_iUnion
Set.ext
QuotientGroup.out_eq'
QuotientGroup.eq
Set.mem_smul_set_iff_inv_smul_mem
IsOpen.leftCoset
IsTopologicalGroup.toContinuousMul
topologicalGroup
OpenSubgroup.isOpen'
toLimit_injective 📖mathematical—TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
toProfinite
limit
OpenNormalSubgroup
group
Preorder.smallCategory
PartialOrder.toPreorder
OpenNormalSubgroup.instPartialOrderOpenNormalSubgroup
diagram
DFunLike.coe
ContinuousMonoidHom
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ContinuousMonoidHom.instFunLike
Hom.hom
toLimit
—MonoidHom.ker_eq_bot_iff
Subgroup.eq_bot_iff_forall
exist_openNormalSubgroup_sub_open_nhds_of_one
topologicalGroup
CompHausLike.is_compact
Profinite.instTotallyDisconnectedSpaceCarrierToTop
isOpen_compl_singleton
TotallyDisconnectedSpace.t1Space
Set.mem_compl_singleton_iff
QuotientGroup.eq_one_iff
toLimit_surjective 📖mathematical—TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
toProfinite
limit
OpenNormalSubgroup
group
Preorder.smallCategory
PartialOrder.toPreorder
OpenNormalSubgroup.instPartialOrderOpenNormalSubgroup
diagram
DFunLike.coe
ContinuousMonoidHom
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ContinuousMonoidHom.instFunLike
Hom.hom
toLimit
—IsClosedMap.isClosed_range
Continuous.isClosedMap
CompHausLike.is_compact
instT2SpaceSubtype
Pi.t2Space
CompHausLike.is_hausdorff
ContinuousMonoidHom.continuous_toFun
Set.range_eq_univ
closure_eq_iff_isClosed
Dense.closure_eq
denseRange_toLimit

---

← Back to Index