Documentation Verification Report

ClopenNhdofOne

📁 Source: Mathlib/Topology/Algebra/ClopenNhdofOne.lean

Statistics

MetricCount
Definitions0
Theoremsexist_openNormalSubgroup_sub_clopen_nhds_of_one, closedSubgroup_eq_sInf_open, exist_openNormalSubgroup_sub_open_nhds_of_one
3
Total3

IsTopologicalGroup

Theorems

NameKindAssumesProvesValidatesDepends On
exist_openNormalSubgroup_sub_clopen_nhds_of_one 📖mathematicalIsClopen
Set
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.instHasSubset
SetLike.coe
OpenNormalSubgroup
OpenNormalSubgroup.instSetLike
exist_openSubgroup_sub_clopen_nhds_of_one
Subgroup.finiteIndex_of_finite_quotient
Subgroup.instFiniteQuotientOfContinuousMulOfCompactSpace
toContinuousMul
Subgroup.isOpen_of_isClosed_of_finiteIndex
Subgroup.finiteIndex_normalCore
Subgroup.normalCore_isClosed
OpenSubgroup.isClosed
Subgroup.normalCore_normal
Subgroup.normalCore_le

ProfiniteGrp

Theorems

NameKindAssumesProvesValidatesDepends On
closedSubgroup_eq_sInf_open 📖mathematicalClosedSubgroup.toSubgroup
InfSet.sInf
Subgroup
Subgroup.instInfSet
setOf
IsOpen
SetLike.coe
Subgroup.instSetLike
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
le_antisymm
le_sInf
IsClosed.isOpen_compl
IsTopologicalGroup.toContinuousMul
Homeomorph.isClosedMap
ClosedSubgroup.isClosed'
Set.mem_compl
inv_mem_iff
SubgroupClass.toInvMemClass
Subgroup.instSubgroupClass
inv_eq_iff_mul_eq_one
exist_openNormalSubgroup_sub_open_nhds_of_one
Subgroup.mem_sup_of_normal_left
OpenNormalSubgroup.instNormal
eq_mul_inv_iff_mul_eq
mem_leftCoset
ClosedSubgroup.instSubgroupClass
Subgroup.mem_sInf
Subgroup.isOpen_mono
le_sup_left
OpenSubgroup.isOpen
le_sup_right
exist_openNormalSubgroup_sub_open_nhds_of_one 📖mathematicalIsOpen
Set
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.instHasSubset
SetLike.coe
OpenNormalSubgroup
OpenNormalSubgroup.instSetLike
Filter.HasBasis.mem_iff'
nhds_basis_clopen
T25Space.t2Space
T3Space.t25Space
T4Space.t3Space
instT4SpaceOfT1SpaceOfNormalSpace
TotallyDisconnectedSpace.t1Space
NormalSpace.of_regularSpace_lindelofSpace
IsTopologicalGroup.regularSpace
instLindelofSpaceOfSigmaCompactSpace
CompactSpace.sigmaCompact
mem_nhds_iff
subset_refl
Set.instReflSubset
IsTopologicalGroup.exist_openNormalSubgroup_sub_clopen_nhds_of_one

---

← Back to Index