Documentation Verification Report

ConstMulAction

πŸ“ Source: Mathlib/Topology/Algebra/ConstMulAction.lean

Statistics

MetricCount
DefinitionsContinuousConstSMul, ContinuousConstVAdd, smul, smulOfNeZero, vadd, ProperlyDiscontinuousSMul, ProperlyDiscontinuousVAdd
7
TheoremsdiscreteTopology_iff, t1Space_iff, isOpenQuotientMap_quotientMk, continuousConstVAdd, continuousConstVAdd, const_smul, const_vadd, const_smul, const_vadd, continuous_const_smul, op, secondCountableTopology, continuous_const_vadd, op, secondCountableTopology, const_smul, const_vadd, const_smul, const_vadd, smul, vadd, const_smul, const_vadd, to_properlyDiscontinuousSMul, to_properlyDiscontinuousVAdd, comp_smul, comp_smul, smulOfNeZero_apply, smulOfNeZero_symm_apply, smul_apply, smul_symm_apply, vadd_apply, vadd_symm_apply, const_smul, const_vadd, smul, smul_of_ne_zero, smulβ‚€, vadd, smul, vadd, smul, smul_left, smulβ‚€, vadd, vadd_left, continuousAt_const_smul_iff, continuousOn_const_smul_iff, continuousWithinAt_const_smul_iff, continuous_const_smul_iff, isClosedMap_smul, isHomeomorph_smul, isOpenMap_smul, isQuotientMap_nsmul, isQuotientMap_smul, isQuotientMap_zsmul, smul_mem_nhds_smul_iff, tendsto_const_smul_iff, discreteTopology_iff, t1Space_iff, isOpenQuotientMap_quotientMk, continuousConstSMul, continuousConstSMul', continuousConstVAdd', continuousConstSMul, continuousConstVAdd, exists_nhds_disjoint_image, exists_nhds_image_smul_eq_self, finite_disjoint_inter_image, finite_stabilizer, finite_stabilizer', exists_nhds_disjoint_image, exists_nhds_image_vadd_eq_self, finite_disjoint_inter_image, finite_stabilizer, finite_stabilizer', const_smul, const_vadd, continuousConstSMul, continuousConstVAdd, continuousConstSMul, closure_smul, closure_smulβ‚€, closure_smulβ‚€', closure_vadd, continuousAt_const_smul_iff, continuousAt_const_smul_iffβ‚€, continuousAt_const_vadd_iff, continuousOn_const_smul_iff, continuousOn_const_smul_iffβ‚€, continuousOn_const_vadd_iff, continuousWithinAt_const_smul_iff, continuousWithinAt_const_smul_iffβ‚€, continuousWithinAt_const_vadd_iff, continuous_const_smul_iff, continuous_const_smul_iffβ‚€, continuous_const_vadd_iff, instContinuousConstSMulForall, instContinuousConstSMulOrderDual, instContinuousConstSMulULift, instContinuousConstVAddForall, instContinuousConstVAddOrderDual, instContinuousConstVAddULift, interior_smul, interior_smulβ‚€, interior_vadd, isClosedMap_smul, isClosedMap_smul_of_ne_zero, isClosedMap_smulβ‚€, isClosedMap_vadd, isClosed_setOf_map_smul, isHomeomorph_smul, isHomeomorph_smulβ‚€, isHomeomorph_vadd, isOpenMap_quotient_mk'_add, isOpenMap_quotient_mk'_mul, isOpenMap_smul, isOpenMap_smulβ‚€, isOpenMap_vadd, nhds_smul, nhds_smulβ‚€, nhds_vadd, punctured_nhds_smul, punctured_nhds_smulβ‚€, punctured_nhds_vadd, set_smul_closure_subset, set_smul_mem_nhds_zero_iff, set_vadd_closure_subset, smul_closure_orbit_subset, smul_closure_subset, smul_mem_nhds_self, smul_mem_nhds_smul, smul_mem_nhds_smul_iff, smul_mem_nhds_smul_iffβ‚€, smul_mem_nhds_smulβ‚€, subset_interior_smul_right, subset_interior_vadd_right, t2Space_of_properlyDiscontinuousSMul_of_t2Space, t2Space_of_properlyDiscontinuousVAdd_of_t2Space, tendsto_const_smul_iff, tendsto_const_smul_iffβ‚€, tendsto_const_vadd_iff, vadd_closure_orbit_subset, vadd_closure_subset, vadd_mem_nhds_self, vadd_mem_nhds_vadd, vadd_mem_nhds_vadd_iff
147
Total154

AddAction

Theorems

NameKindAssumesProvesValidatesDepends On
isOpenQuotientMap_quotientMk πŸ“–mathematicalβ€”IsOpenQuotientMap
orbitRel
instTopologicalSpaceQuotient
β€”Quot.mk_surjective
isOpenMap_quotient_mk'_add

AddAction.IsPretransitive

Theorems

NameKindAssumesProvesValidatesDepends On
discreteTopology_iff πŸ“–mathematicalβ€”DiscreteTopology
IsOpen
Set
Set.instSingletonSet
β€”discreteTopology_iff_isOpen_singleton
AddAction.exists_vadd_eq
Set.image_singleton
Set.image_vadd
IsOpen.vadd
t1Space_iff πŸ“–mathematicalβ€”T1Space
IsClosed
Set
Set.instSingletonSet
β€”isClosed_singleton
AddAction.exists_vadd_eq
Set.image_singleton
Set.image_vadd
IsClosed.vadd

AddOpposite

Theorems

NameKindAssumesProvesValidatesDepends On
continuousConstVAdd πŸ“–mathematicalβ€”ContinuousConstVAdd
AddOpposite
instTopologicalSpaceAddOpposite
instVAdd
β€”Continuous.comp
continuous_op
Continuous.const_vadd
continuous_unop

AddUnits

Theorems

NameKindAssumesProvesValidatesDepends On
continuousConstVAdd πŸ“–mathematicalβ€”ContinuousConstVAdd
AddUnits
instVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
β€”ContinuousConstVAdd.continuous_const_vadd

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
const_smul πŸ“–β€”Continuousβ€”β€”comp
ContinuousConstSMul.continuous_const_smul
const_vadd πŸ“–mathematicalContinuousHVAdd.hVAdd
instHVAdd
β€”comp
ContinuousConstVAdd.continuous_const_vadd

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
const_smul πŸ“–β€”ContinuousAtβ€”β€”Filter.Tendsto.const_smul
const_vadd πŸ“–mathematicalContinuousAtHVAdd.hVAdd
instHVAdd
β€”Filter.Tendsto.const_vadd

ContinuousConstSMul

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_const_smul πŸ“–mathematicalβ€”Continuousβ€”β€”
op πŸ“–mathematicalβ€”ContinuousConstSMul
MulOpposite
β€”IsCentralScalar.op_smul_eq_smul
continuous_const_smul
secondCountableTopology πŸ“–mathematicalβ€”SecondCountableTopology
MulAction.orbitRel
instTopologicalSpaceQuotient
β€”TopologicalSpace.Quotient.secondCountableTopology
isOpenMap_quotient_mk'_mul

ContinuousConstVAdd

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_const_vadd πŸ“–mathematicalβ€”Continuous
HVAdd.hVAdd
instHVAdd
β€”β€”
op πŸ“–mathematicalβ€”ContinuousConstVAdd
AddOpposite
β€”IsCentralVAdd.op_vadd_eq_vadd
continuous_const_vadd
secondCountableTopology πŸ“–mathematicalβ€”SecondCountableTopology
AddAction.orbitRel
instTopologicalSpaceQuotient
β€”TopologicalSpace.Quotient.secondCountableTopology
isOpenMap_quotient_mk'_add

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
const_smul πŸ“–β€”ContinuousOnβ€”β€”ContinuousWithinAt.const_smul
const_vadd πŸ“–mathematicalContinuousOnHVAdd.hVAdd
instHVAdd
β€”ContinuousWithinAt.const_vadd

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
const_smul πŸ“–β€”ContinuousWithinAtβ€”β€”Filter.Tendsto.const_smul
const_vadd πŸ“–mathematicalContinuousWithinAtHVAdd.hVAdd
instHVAdd
β€”Filter.Tendsto.const_vadd

Dense

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–mathematicalDenseSet
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”dense_iff_closure_eq
closure_smul
Set.smul_set_univ
vadd πŸ“–mathematicalDenseHVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”dense_iff_closure_eq
closure_vadd
Set.vadd_set_univ

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
const_smul πŸ“–β€”Filter.Tendsto
nhds
β€”β€”comp
Continuous.tendsto
ContinuousConstSMul.continuous_const_smul
const_vadd πŸ“–mathematicalFilter.Tendsto
nhds
HVAdd.hVAdd
instHVAdd
β€”comp
Continuous.tendsto
ContinuousConstVAdd.continuous_const_vadd

Finite

Theorems

NameKindAssumesProvesValidatesDepends On
to_properlyDiscontinuousSMul πŸ“–mathematicalβ€”ProperlyDiscontinuousSMul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”Set.toFinite
Subtype.finite
to_properlyDiscontinuousVAdd πŸ“–mathematicalβ€”ProperlyDiscontinuousVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”Set.toFinite
Subtype.finite

HasCompactMulSupport

Theorems

NameKindAssumesProvesValidatesDepends On
comp_smul πŸ“–mathematicalHasCompactMulSupportSemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”comp_homeomorph

HasCompactSupport

Theorems

NameKindAssumesProvesValidatesDepends On
comp_smul πŸ“–mathematicalHasCompactSupportSemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”comp_homeomorph

Homeomorph

Definitions

NameCategoryTheorems
smul πŸ“–CompOp
2 mathmath: smul_symm_apply, smul_apply
smulOfNeZero πŸ“–CompOp
2 mathmath: smulOfNeZero_symm_apply, smulOfNeZero_apply
vadd πŸ“–CompOp
2 mathmath: vadd_symm_apply, vadd_apply

Theorems

NameKindAssumesProvesValidatesDepends On
smulOfNeZero_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
smulOfNeZero
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”β€”
smulOfNeZero_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
smulOfNeZero
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
β€”β€”
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
smul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”β€”
smul_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
smul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
vadd_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
vadd
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”β€”
vadd_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
vadd
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”β€”

Inseparable

Theorems

NameKindAssumesProvesValidatesDepends On
const_smul πŸ“–β€”Inseparableβ€”β€”map
ContinuousConstSMul.continuous_const_smul
const_vadd πŸ“–mathematicalInseparableHVAdd.hVAdd
instHVAdd
β€”map
ContinuousConstVAdd.continuous_const_vadd

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–mathematicalβ€”IsClosed
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”isClosedMap_smul
smul_of_ne_zero πŸ“–mathematicalβ€”IsClosed
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”isClosedMap_smul_of_ne_zero
smulβ‚€ πŸ“–mathematicalβ€”IsClosed
Set
Set.smulSet
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
MulActionWithZero.toSMulWithZero
β€”isClosedMap_smulβ‚€
vadd πŸ“–mathematicalβ€”IsClosed
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”isClosedMap_vadd

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–mathematicalIsCompactSet
Set.smulSet
β€”image
Continuous.const_smul
continuous_id
vadd πŸ“–mathematicalIsCompactHVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
β€”image
Continuous.const_vadd
continuous_id

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–mathematicalIsOpenSet
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”isOpenMap_smul
smul_left πŸ“–mathematicalIsOpenSet
Set.smul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”Set.iUnion_smul_set
isOpen_biUnion
smul
smulβ‚€ πŸ“–mathematicalIsOpenSet
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”isOpenMap_smulβ‚€
vadd πŸ“–mathematicalIsOpenHVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”isOpenMap_vadd
vadd_left πŸ“–mathematicalIsOpenHVAdd.hVAdd
Set
instHVAdd
Set.vadd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”Set.iUnion_vadd_set
isOpen_biUnion
vadd

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_const_smul_iff πŸ“–mathematicalIsUnitContinuousAt
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”continuousAt_const_smul_iff
Units.continuousConstSMul
continuousOn_const_smul_iff πŸ“–mathematicalIsUnitContinuousOn
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”continuousOn_const_smul_iff
Units.continuousConstSMul
continuousWithinAt_const_smul_iff πŸ“–mathematicalIsUnitContinuousWithinAt
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”continuousWithinAt_const_smul_iff
Units.continuousConstSMul
continuous_const_smul_iff πŸ“–mathematicalIsUnitContinuous
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”continuous_const_smul_iff
Units.continuousConstSMul
isClosedMap_smul πŸ“–mathematicalIsUnitIsClosedMap
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”isClosedMap_smul
Units.continuousConstSMul
isHomeomorph_smul πŸ“–mathematicalIsUnitIsHomeomorph
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”isHomeomorph_smul
Units.continuousConstSMul
isOpenMap_smul πŸ“–mathematicalIsUnitIsOpenMap
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”isOpenMap_smul
Units.continuousConstSMul
isQuotientMap_nsmul πŸ“–mathematicalTopology.IsQuotientMap
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddMonoid.toNatSMulβ€”isQuotientMap_smul
AddCommMonoid.nat_isScalarTower
map_nsmul
AddMonoidHom.instAddMonoidHomClass
nsmul_one
isQuotientMap_smul πŸ“–β€”Topology.IsQuotientMap
DFunLike.coe
MulActionHom
instFunLikeMulActionHom
IsUnit
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”Topology.IsQuotientMap.of_comp_isQuotientMap
smul_assoc
one_smul
map_smul
instMulActionSemiHomClassMulActionHom
Topology.IsQuotientMap.comp
IsHomeomorph.isQuotientMap
isHomeomorph_smul
isQuotientMap_zsmul πŸ“–mathematicalTopology.IsQuotientMap
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom.instFunLike
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
SubNegMonoid.toZSMulβ€”isQuotientMap_smul
AddCommGroup.intIsScalarTower
map_zsmul
AddMonoidHom.instAddMonoidHomClass
zsmul_one
smul_mem_nhds_smul_iff πŸ“–mathematicalIsUnitSet
Filter
Filter.instMembership
nhds
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Set.smulSet
β€”smul_mem_nhds_smul_iff
Units.continuousConstSMul
tendsto_const_smul_iff πŸ“–mathematicalIsUnitFilter.Tendsto
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
nhds
β€”tendsto_const_smul_iff
Units.continuousConstSMul

MulAction

Theorems

NameKindAssumesProvesValidatesDepends On
isOpenQuotientMap_quotientMk πŸ“–mathematicalβ€”IsOpenQuotientMap
orbitRel
instTopologicalSpaceQuotient
β€”Quot.mk_surjective
isOpenMap_quotient_mk'_mul

MulAction.IsPretransitive

Theorems

NameKindAssumesProvesValidatesDepends On
discreteTopology_iff πŸ“–mathematicalβ€”DiscreteTopology
IsOpen
Set
Set.instSingletonSet
β€”discreteTopology_iff_isOpen_singleton
MulAction.exists_smul_eq
Set.image_singleton
Set.image_smul
IsOpen.smul
t1Space_iff πŸ“–mathematicalβ€”T1Space
IsClosed
Set
Set.instSingletonSet
β€”isClosed_singleton
MulAction.exists_smul_eq
Set.image_singleton
Set.image_smul
IsClosed.smul

MulOpposite

Theorems

NameKindAssumesProvesValidatesDepends On
continuousConstSMul πŸ“–mathematicalβ€”ContinuousConstSMul
MulOpposite
instTopologicalSpaceMulOpposite
instSMul
β€”Continuous.comp
continuous_op
Continuous.const_smul
continuous_unop

OrderDual

Theorems

NameKindAssumesProvesValidatesDepends On
continuousConstSMul' πŸ“–mathematicalβ€”ContinuousConstSMul
OrderDual
instSMul'
β€”β€”
continuousConstVAdd' πŸ“–mathematicalβ€”ContinuousConstVAdd
OrderDual
instVAdd'
β€”β€”

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
continuousConstSMul πŸ“–mathematicalβ€”ContinuousConstSMul
instTopologicalSpaceProd
instSMul
β€”Continuous.prodMk
Continuous.const_smul
continuous_fst
continuous_snd
continuousConstVAdd πŸ“–mathematicalβ€”ContinuousConstVAdd
instTopologicalSpaceProd
instVAdd
β€”Continuous.prodMk
Continuous.const_vadd
continuous_fst
continuous_snd

ProperlyDiscontinuousSMul

Theorems

NameKindAssumesProvesValidatesDepends On
exists_nhds_disjoint_image πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.image
β€”not_imp_not
exists_nhds_image_smul_eq_self
exists_nhds_image_smul_eq_self πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
β€”WeaklyLocallyCompactSpace.exists_compact_mem_nhds
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
Set.Finite.subset
finite_disjoint_inter_image
Filter.inter_mem
Filter.iInter_mem
Continuous.continuousAt
ContinuousConstSMul.continuous_const_smul
Set.mem_iInter
Set.mem_inter_iff
Disjoint.le_bot
t2_separation_nhds
finite_disjoint_inter_image πŸ“–mathematicalIsCompactSet.Finite
setOf
Set.Nonempty
Set
Set.instInter
Set.image
β€”β€”
finite_stabilizer πŸ“–mathematicalβ€”Set.Finite
SetLike.coe
Subgroup
Subgroup.instSetLike
MulAction.stabilizer
β€”finite_stabilizer'
finite_stabilizer' πŸ“–mathematicalβ€”Set.Finite
setOf
β€”finite_disjoint_inter_image
isCompact_singleton

ProperlyDiscontinuousVAdd

Theorems

NameKindAssumesProvesValidatesDepends On
exists_nhds_disjoint_image πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.image
HVAdd.hVAdd
instHVAdd
β€”not_imp_not
Set.not_disjoint_iff_nonempty_inter
exists_nhds_image_vadd_eq_self
exists_nhds_image_vadd_eq_self πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
HVAdd.hVAdd
instHVAdd
β€”WeaklyLocallyCompactSpace.exists_compact_mem_nhds
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
Set.Finite.subset
finite_disjoint_inter_image
Filter.inter_mem
Filter.iInter_mem
Continuous.continuousAt
ContinuousConstVAdd.continuous_const_vadd
Set.mem_iInter
Set.mem_inter_iff
Disjoint.le_bot
t2_separation_nhds
finite_disjoint_inter_image πŸ“–mathematicalIsCompactSet.Finite
setOf
Set.Nonempty
Set
Set.instInter
Set.image
HVAdd.hVAdd
instHVAdd
β€”β€”
finite_stabilizer πŸ“–mathematicalβ€”Set.Finite
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
AddAction.stabilizer
β€”finite_stabilizer'
finite_stabilizer' πŸ“–mathematicalβ€”Set.Finite
setOf
HVAdd.hVAdd
instHVAdd
β€”Set.mem_singleton_iff
Set.singleton_inter_nonempty
Set.image_singleton
finite_disjoint_inter_image
isCompact_singleton

Specializes

Theorems

NameKindAssumesProvesValidatesDepends On
const_smul πŸ“–β€”Specializesβ€”β€”map
ContinuousConstSMul.continuous_const_smul
const_vadd πŸ“–mathematicalSpecializesHVAdd.hVAdd
instHVAdd
β€”map
ContinuousConstVAdd.continuous_const_vadd

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
continuousConstSMul πŸ“–mathematicalTopology.IsInducingContinuousConstSMulβ€”continuous_iff
Continuous.const_smul
continuous
continuousConstVAdd πŸ“–mathematicalTopology.IsInducing
HVAdd.hVAdd
instHVAdd
ContinuousConstVAddβ€”continuous_iff
Continuous.const_vadd
continuous

Units

Theorems

NameKindAssumesProvesValidatesDepends On
continuousConstSMul πŸ“–mathematicalβ€”ContinuousConstSMul
Units
instSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”ContinuousConstSMul.continuous_const_smul

(root)

Definitions

NameCategoryTheorems
ContinuousConstSMul πŸ“–CompData
33 mathmath: MulOpposite.continuousConstSMul, OrderDual.continuousConstSMul', isQuotientCoveringMap_iff, Topology.IsInducing.continuousConstSMul, UniformContinuousConstSMul.to_continuousConstSMul, ContinuousAlternatingMap.instContinuousConstSMul, WeakDual.instContinuousConstSMul, IsIsometricSMul.to_continuousConstSMul, AddMonoid.continuousConstSMul_nat, isQuotientCoveringMap_iff_isCoveringMap_and, instContinuousConstSMulMatrix, Prod.continuousConstSMul, ContinuousMultilinearMap.instContinuousConstSMul, DivisionRing.continuousConstSMul_rat, IsQuotientCoveringMap.toContinuousConstSMul, AddGroup.continuousConstSMul_int, ConjAct.units_continuousConstSMul, Units.continuousConstSMul, ContinuousLinearMap.continuousConstSMul, IsScalarTower.continuousConstSMul, SeparationQuotient.instContinuousConstSMul, ContinuousSMul.continuousConstSMul, instContinuousConstSMulULift, SMulCommClass.continuousConstSMul, UniformConvergenceCLM.instContinuousConstSMul, QuotientGroup.instContinuousConstSMul, UpperHalfPlane.instContinuousGLSMul, ContinuousMap.instContinuousConstSMul, ContinuousLinearMap.continuousConstSMul_apply, instContinuousConstSMulSubtypeLeOfNat, instContinuousConstSMulOrderDual, ContinuousConstSMul.op, TrivSqZeroExt.instContinuousConstSMul
ContinuousConstVAdd πŸ“–CompData
19 mathmath: isAddQuotientCoveringMap_iff_isCoveringMap_and, VAddCommClass.continuousConstVAdd, instContinuousConstVAddULift, VAddAssocClass.continuousConstVAdd, UniformContinuousConstVAdd.to_continuousConstVAdd, IsIsometricVAdd.to_continuousConstVAdd, ContinuousMap.instContinuousConstVAdd, ContinuousConstVAdd.op, instContinuousConstVAddOrderDual, OrderDual.continuousConstVAdd', QuotientAddGroup.instContinuousConstVAdd, Prod.continuousConstVAdd, AddUnits.continuousConstVAdd, AddOpposite.continuousConstVAdd, ContinuousVAdd.continuousConstVAdd, isAddQuotientCoveringMap_iff, IsAddQuotientCoveringMap.toContinuousConstVAdd, SeparationQuotient.instContinuousConstVAdd, Topology.IsInducing.continuousConstVAdd
ProperlyDiscontinuousSMul πŸ“–CompData
4 mathmath: Finite.to_properlyDiscontinuousSMul, Subgroup.properlyDiscontinuousSMul_opposite_of_tendsto_cofinite, Subgroup.properlyDiscontinuousSMul_of_tendsto_cofinite, properlyDiscontinuousSMul_iff_properSMul
ProperlyDiscontinuousVAdd πŸ“–CompData
4 mathmath: Finite.to_properlyDiscontinuousVAdd, AddSubgroup.properlyDiscontinuousVAdd_opposite_of_tendsto_cofinite, AddCircle.instProperlyDiscontinuousVAddSubtypeAddOppositeRealMemAddSubgroupOpZmultiples, AddSubgroup.properlyDiscontinuousVAdd_of_tendsto_cofinite

Theorems

NameKindAssumesProvesValidatesDepends On
closure_smul πŸ“–mathematicalβ€”closure
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”Homeomorph.image_closure
closure_smulβ‚€ πŸ“–mathematicalβ€”closure
Set
Set.smulSet
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
MulActionWithZero.toSMulWithZero
β€”eq_or_ne
Set.eq_empty_or_nonempty
Set.smul_set_empty
IsClosed.closure_eq
Set.zero_smul_set
Set.Nonempty.closure
closure_singleton
closure_smulβ‚€'
closure_smulβ‚€' πŸ“–mathematicalβ€”closure
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”Homeomorph.image_closure
closure_vadd πŸ“–mathematicalβ€”closure
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”Homeomorph.image_closure
continuousAt_const_smul_iff πŸ“–mathematicalβ€”ContinuousAt
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”tendsto_const_smul_iff
continuousAt_const_smul_iffβ‚€ πŸ“–mathematicalβ€”ContinuousAt
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”continuousAt_const_smul_iff
Units.continuousConstSMul
continuousAt_const_vadd_iff πŸ“–mathematicalβ€”ContinuousAt
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”tendsto_const_vadd_iff
continuousOn_const_smul_iff πŸ“–mathematicalβ€”ContinuousOn
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”continuousWithinAt_const_smul_iff
continuousOn_const_smul_iffβ‚€ πŸ“–mathematicalβ€”ContinuousOn
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”continuousOn_const_smul_iff
Units.continuousConstSMul
continuousOn_const_vadd_iff πŸ“–mathematicalβ€”ContinuousOn
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”continuousWithinAt_const_vadd_iff
continuousWithinAt_const_smul_iff πŸ“–mathematicalβ€”ContinuousWithinAt
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”tendsto_const_smul_iff
continuousWithinAt_const_smul_iffβ‚€ πŸ“–mathematicalβ€”ContinuousWithinAt
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”tendsto_const_smul_iff
Units.continuousConstSMul
continuousWithinAt_const_vadd_iff πŸ“–mathematicalβ€”ContinuousWithinAt
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”tendsto_const_vadd_iff
continuous_const_smul_iff πŸ“–mathematicalβ€”Continuous
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”β€”
continuous_const_smul_iffβ‚€ πŸ“–mathematicalβ€”Continuous
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”continuous_const_smul_iff
Units.continuousConstSMul
continuous_const_vadd_iff πŸ“–mathematicalβ€”Continuous
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”continuous_iff_continuousAt
continuousAt_const_vadd_iff
instContinuousConstSMulForall πŸ“–mathematicalContinuousConstSMulPi.topologicalSpace
Pi.instSMul
β€”continuous_pi
Continuous.const_smul
continuous_apply
instContinuousConstSMulOrderDual πŸ“–mathematicalβ€”ContinuousConstSMul
OrderDual
OrderDual.instTopologicalSpace
OrderDual.instSMul
β€”β€”
instContinuousConstSMulULift πŸ“–mathematicalβ€”ContinuousConstSMul
ULift.smulLeft
β€”ContinuousConstSMul.continuous_const_smul
instContinuousConstVAddForall πŸ“–mathematicalContinuousConstVAddPi.topologicalSpace
Pi.instVAdd
β€”continuous_pi
Continuous.const_vadd
continuous_apply
instContinuousConstVAddOrderDual πŸ“–mathematicalβ€”ContinuousConstVAdd
OrderDual
OrderDual.instTopologicalSpace
OrderDual.instVAdd
β€”β€”
instContinuousConstVAddULift πŸ“–mathematicalβ€”ContinuousConstVAdd
ULift.vaddLeft
β€”ContinuousConstVAdd.continuous_const_vadd
interior_smul πŸ“–mathematicalβ€”interior
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”Homeomorph.image_interior
interior_smulβ‚€ πŸ“–mathematicalβ€”interior
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”Homeomorph.image_interior
interior_vadd πŸ“–mathematicalβ€”interior
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”Homeomorph.image_interior
isClosedMap_smul πŸ“–mathematicalβ€”IsClosedMap
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”Homeomorph.isClosedMap
isClosedMap_smul_of_ne_zero πŸ“–mathematicalβ€”IsClosedMap
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”Homeomorph.isClosedMap
isClosedMap_smulβ‚€ πŸ“–mathematicalβ€”IsClosedMap
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
MulActionWithZero.toSMulWithZero
β€”eq_or_ne
zero_smul
isClosedMap_const
Homeomorph.isClosedMap
isClosedMap_vadd πŸ“–mathematicalβ€”IsClosedMap
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”Homeomorph.isClosedMap
isClosed_setOf_map_smul πŸ“–mathematicalβ€”IsClosed
Pi.topologicalSpace
setOf
β€”Set.setOf_forall
isClosed_iInter
isClosed_eq
continuous_apply
Continuous.const_smul
isHomeomorph_smul πŸ“–mathematicalβ€”IsHomeomorph
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”Homeomorph.isHomeomorph
isHomeomorph_smulβ‚€ πŸ“–mathematicalβ€”IsHomeomorph
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”Homeomorph.isHomeomorph
isHomeomorph_vadd πŸ“–mathematicalβ€”IsHomeomorph
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”Homeomorph.isHomeomorph
isOpenMap_quotient_mk'_add πŸ“–mathematicalβ€”IsOpenMap
AddAction.orbitRel
instTopologicalSpaceQuotient
β€”isOpen_coinduced
AddAction.quotient_preimage_image_eq_union_add
isOpen_iUnion
isOpenMap_vadd
isOpenMap_quotient_mk'_mul πŸ“–mathematicalβ€”IsOpenMap
MulAction.orbitRel
instTopologicalSpaceQuotient
β€”isOpen_coinduced
MulAction.quotient_preimage_image_eq_union_mul
isOpen_iUnion
isOpenMap_smul
isOpenMap_smul πŸ“–mathematicalβ€”IsOpenMap
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”Homeomorph.isOpenMap
isOpenMap_smulβ‚€ πŸ“–mathematicalβ€”IsOpenMap
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”Homeomorph.isOpenMap
isOpenMap_vadd πŸ“–mathematicalβ€”IsOpenMap
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”Homeomorph.isOpenMap
nhds_smul πŸ“–mathematicalβ€”nhds
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Filter
Filter.instSMulFilter
β€”Homeomorph.map_nhds_eq
nhds_smulβ‚€ πŸ“–mathematicalβ€”nhds
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Filter
Filter.instSMulFilter
β€”nhds_smul
Units.continuousConstSMul
nhds_vadd πŸ“–mathematicalβ€”nhds
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Filter
Filter.instVAddFilter
β€”Homeomorph.map_nhds_eq
punctured_nhds_smul πŸ“–mathematicalβ€”nhdsWithin
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Filter
Filter.instSMulFilter
β€”Homeomorph.map_punctured_nhds_eq
punctured_nhds_smulβ‚€ πŸ“–mathematicalβ€”nhdsWithin
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Filter
Filter.instSMulFilter
β€”punctured_nhds_smul
Units.continuousConstSMul
punctured_nhds_vadd πŸ“–mathematicalβ€”nhdsWithin
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Filter
Filter.instVAddFilter
β€”Homeomorph.map_punctured_nhds_eq
set_smul_closure_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.smul
closure
β€”Set.iUnionβ‚‚_subset
HasSubset.Subset.trans
Set.instIsTransSubset
smul_closure_subset
closure_mono
Set.subset_biUnion_of_mem
set_smul_mem_nhds_zero_iff πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Set.smulSet
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
β€”smul_zero
smul_mem_nhds_smul_iffβ‚€
set_vadd_closure_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
HVAdd.hVAdd
instHVAdd
Set.vadd
closure
β€”Set.iUnion_vadd_set
Set.iUnionβ‚‚_subset
HasSubset.Subset.trans
Set.instIsTransSubset
vadd_closure_subset
closure_mono
Set.subset_biUnion_of_mem
smul_closure_orbit_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
closure
MulAction.orbit
β€”HasSubset.Subset.trans
Set.instIsTransSubset
smul_closure_subset
closure_mono
MulAction.smul_orbit_subset
smul_closure_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.smulSet
closure
β€”Set.MapsTo.image_subset
Set.MapsTo.closure
Set.mapsTo_image
ContinuousConstSMul.continuous_const_smul
smul_mem_nhds_self πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Monoid.toMulAction
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”smul_mem_nhds_smul_iff
inv_mul_cancel
inv_smul_smul
smul_mem_nhds_smul πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set.smulSet
β€”smul_mem_nhds_smul_iff
smul_mem_nhds_smul_iff πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set.smulSet
β€”Topology.IsOpenEmbedding.image_mem_nhds
Homeomorph.isOpenEmbedding
smul_mem_nhds_smul_iffβ‚€ πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Set.smulSet
β€”smul_mem_nhds_smul_iff
Units.continuousConstSMul
smul_mem_nhds_smulβ‚€ πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Set.smulSet
β€”smul_mem_nhds_smul_iffβ‚€
subset_interior_smul_right πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.smul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
interior
β€”interior_maximal
Set.smul_subset_smul_left
interior_subset
IsOpen.smul_left
isOpen_interior
subset_interior_vadd_right πŸ“–mathematicalβ€”Set
Set.instHasSubset
HVAdd.hVAdd
instHVAdd
Set.vadd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
interior
β€”interior_maximal
Set.vadd_subset_vadd_left
interior_subset
IsOpen.vadd_left
isOpen_interior
t2Space_of_properlyDiscontinuousSMul_of_t2Space πŸ“–mathematicalβ€”T2Space
MulAction.orbitRel
instTopologicalSpaceQuotient
β€”t2Space_iff_nhds
isOpenMap_quotient_mk'_mul
WeaklyLocallyCompactSpace.exists_compact_mem_nhds
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
ProperlyDiscontinuousSMul.finite_disjoint_inter_image
IsOpenMap.image_mem_nhds
Filter.inter_mem
Filter.biInter_mem
Continuous.continuousAt
ContinuousConstSMul.continuous_const_smul
MulAction.disjoint_image_image_iff
Disjoint.le_bot
Set.mem_iInterβ‚‚
Set.eq_empty_iff_forall_notMem
Set.mem_image_of_mem
t2_separation_nhds
t2Space_of_properlyDiscontinuousVAdd_of_t2Space πŸ“–mathematicalβ€”T2Space
AddAction.orbitRel
instTopologicalSpaceQuotient
β€”t2Space_iff_nhds
isOpenMap_quotient_mk'_add
WeaklyLocallyCompactSpace.exists_compact_mem_nhds
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
ProperlyDiscontinuousVAdd.finite_disjoint_inter_image
IsOpenMap.image_mem_nhds
Filter.inter_mem
Filter.biInter_mem
Continuous.continuousAt
ContinuousConstVAdd.continuous_const_vadd
AddAction.disjoint_image_image_iff
Disjoint.le_bot
Set.mem_iInterβ‚‚
Set.eq_empty_iff_forall_notMem
Set.not_nonempty_iff_eq_empty
Set.mem_image_of_mem
t2_separation_nhds
tendsto_const_smul_iff πŸ“–mathematicalβ€”Filter.Tendsto
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
nhds
β€”inv_smul_smul
Filter.Tendsto.const_smul
tendsto_const_smul_iffβ‚€ πŸ“–mathematicalβ€”Filter.Tendsto
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
nhds
β€”tendsto_const_smul_iff
Units.continuousConstSMul
tendsto_const_vadd_iff πŸ“–mathematicalβ€”Filter.Tendsto
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
nhds
β€”neg_vadd_vadd
Filter.Tendsto.const_vadd
vadd_closure_orbit_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
HVAdd.hVAdd
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
closure
AddAction.orbit
β€”HasSubset.Subset.trans
Set.instIsTransSubset
vadd_closure_subset
closure_mono
AddAction.vadd_orbit_subset
vadd_closure_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
HVAdd.hVAdd
instHVAdd
Set.vaddSet
closure
β€”Set.MapsTo.image_subset
Set.MapsTo.closure
Set.mapsTo_image
ContinuousConstVAdd.continuous_const_vadd
vadd_mem_nhds_self πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
HVAdd.hVAdd
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”vadd_mem_nhds_vadd_iff
neg_add_cancel
neg_vadd_vadd
vadd_mem_nhds_vadd πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set.vaddSet
β€”vadd_mem_nhds_vadd_iff
vadd_mem_nhds_vadd_iff πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set.vaddSet
β€”Topology.IsOpenEmbedding.image_mem_nhds
Homeomorph.isOpenEmbedding

---

← Back to Index