Documentation Verification Report

Constructions

πŸ“ Source: Mathlib/Topology/Algebra/Constructions.lean

Statistics

MetricCount
DefinitionsinstTopologicalSpaceAddOpposite, opHomeomorph, instTopologicalSpaceAddUnits, instTopologicalSpaceMulOpposite, opHomeomorph, instTopologicalSpaceUnits
6
Theoremscomap_op_nhds, comap_unop_nhds, continuous_op, continuous_unop, instCompactSpace, instDiscreteTopology, instLocallyCompactSpace, instT2Space, instWeaklyLocallyCompactSpace, map_op_nhds, map_unop_nhds, opHomeomorph_apply, opHomeomorph_symm_apply, continuous_coe_neg, continuous_embedProduct, continuous_iff, continuous_map, continuous_val, embedding_val_mk, instDiscreteTopology, instT2Space, isEmbedding_embedProduct, isEmbedding_val_mk', isInducing_embedProduct, isOpenMap_map, topology_eq_inf, comap_op_nhds, comap_unop_nhds, continuous_op, continuous_unop, instCompactSpace, instDiscreteTopology, instLocallyCompactSpace, instT2Space, instWeaklyLocallyCompactSpace, map_op_nhds, map_unop_nhds, opHomeomorph_apply, opHomeomorph_symm_apply, continuous_coe_inv, continuous_embedProduct, continuous_iff, continuous_map, continuous_val, embedding_val_mk, instDiscreteTopology, instT2Space, isEmbedding_embedProduct, isEmbedding_val_mk', isInducing_embedProduct, isOpenMap_map, topology_eq_inf
52
Total58

AddOpposite

Definitions

NameCategoryTheorems
instTopologicalSpaceAddOpposite πŸ“–CompOp
31 mathmath: comap_op_leftUniformSpace, instT2Space, instContinuousAdd, instIsTopologicalRingAddOpposite, opHomeomorph_apply, continuousVAdd, comap_unop_nhds, continuous_op, continuous_unop, comap_op_nhds, instProperVAddAddOppositeOfIsTopologicalAddGroup, instIsTopologicalAddGroupAddOpposite, instCompactSpace, instContinuousMulAddOpposite, ContinuousAdd.to_continuousVAdd_op, instWeaklyLocallyCompactSpace, ContinuousVAdd.op, instIsTopologicalSemiringAddOpposite, instContinuousNegAddOpposite, map_unop_nhds, instDiscreteTopology, instProperVAddSubtypeAddOppositeMemAddSubgroupOpOfIsTopologicalAddGroupOfIsClosedCoe, AddUnits.continuous_embedProduct, continuousConstVAdd, AddUnits.isClosedEmbedding_embedProduct, AddUnits.isEmbedding_embedProduct, AddUnits.isInducing_embedProduct, comap_op_rightUniformSpace, opHomeomorph_symm_apply, instLocallyCompactSpace, map_op_nhds
opHomeomorph πŸ“–CompOp
2 mathmath: opHomeomorph_apply, opHomeomorph_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
comap_op_nhds πŸ“–mathematicalβ€”Filter.comap
AddOpposite
op
nhds
instTopologicalSpaceAddOpposite
unop
β€”Homeomorph.comap_nhds_eq
comap_unop_nhds πŸ“–mathematicalβ€”Filter.comap
AddOpposite
unop
nhds
instTopologicalSpaceAddOpposite
op
β€”Homeomorph.comap_nhds_eq
continuous_op πŸ“–mathematicalβ€”Continuous
AddOpposite
instTopologicalSpaceAddOpposite
op
β€”continuous_induced_rng
continuous_id
continuous_unop πŸ“–mathematicalβ€”Continuous
AddOpposite
instTopologicalSpaceAddOpposite
unop
β€”continuous_induced_dom
instCompactSpace πŸ“–mathematicalβ€”CompactSpace
AddOpposite
instTopologicalSpaceAddOpposite
β€”Homeomorph.compactSpace
instDiscreteTopology πŸ“–mathematicalβ€”DiscreteTopology
AddOpposite
instTopologicalSpaceAddOpposite
β€”Topology.IsEmbedding.discreteTopology
Homeomorph.isEmbedding
instLocallyCompactSpace πŸ“–mathematicalβ€”LocallyCompactSpace
AddOpposite
instTopologicalSpaceAddOpposite
β€”Topology.IsClosedEmbedding.locallyCompactSpace
Homeomorph.isClosedEmbedding
instT2Space πŸ“–mathematicalβ€”T2Space
AddOpposite
instTopologicalSpaceAddOpposite
β€”Homeomorph.t2Space
instWeaklyLocallyCompactSpace πŸ“–mathematicalβ€”WeaklyLocallyCompactSpace
AddOpposite
instTopologicalSpaceAddOpposite
β€”Topology.IsClosedEmbedding.weaklyLocallyCompactSpace
Homeomorph.isClosedEmbedding
map_op_nhds πŸ“–mathematicalβ€”Filter.map
AddOpposite
op
nhds
instTopologicalSpaceAddOpposite
β€”Homeomorph.map_nhds_eq
map_unop_nhds πŸ“–mathematicalβ€”Filter.map
AddOpposite
unop
nhds
instTopologicalSpaceAddOpposite
β€”Homeomorph.map_nhds_eq
opHomeomorph_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
AddOpposite
instTopologicalSpaceAddOpposite
EquivLike.toFunLike
Homeomorph.instEquivLike
opHomeomorph
op
β€”β€”
opHomeomorph_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
AddOpposite
instTopologicalSpaceAddOpposite
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
opHomeomorph
unop
β€”β€”

AddUnits

Definitions

NameCategoryTheorems
instTopologicalSpaceAddUnits πŸ“–CompOp
27 mathmath: instContinuousAdd, Continuous.addUnits_map, continuous_val, instWeaklyLocallyCompactSpaceOfT1SpaceOfContinuousAdd, ContinuousMap.addUnitsLift_apply_neg_apply, isEmbedding_val_mk', ContinuousMap.val_addUnitsLift_apply_apply, instDiscreteTopology, instT2Space, isEmbedding_val, continuousVAdd, ContinuousMap.val_addUnitsLift_symm_apply_apply, AddSubmonoid.isOpen_addUnits, instIsTopologicalAddGroupOfContinuousAdd, isOpenMap_map, embedding_val_mk, instLocallyCompactSpaceOfT1SpaceOfContinuousAdd, instCompactSpaceOfT1SpaceOfContinuousAdd, continuous_embedProduct, continuous_map, isClosedEmbedding_embedProduct, ContinuousMap.addUnitsLift_symm_apply_apply_neg', topology_eq_inf, isEmbedding_embedProduct, isInducing_embedProduct, continuous_iff, continuous_coe_neg

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_coe_neg πŸ“–mathematicalβ€”Continuous
AddUnits
instTopologicalSpaceAddUnits
val
instNeg
β€”continuous_iff
continuous_id
continuous_embedProduct πŸ“–mathematicalβ€”Continuous
AddUnits
AddOpposite
instTopologicalSpaceAddUnits
instTopologicalSpaceProd
AddOpposite.instTopologicalSpaceAddOpposite
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
instAddZeroClass
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddOpposite.instAddZeroClass
AddMonoidHom.instFunLike
embedProduct
β€”continuous_induced_dom
continuous_iff πŸ“–mathematicalβ€”Continuous
AddUnits
instTopologicalSpaceAddUnits
val
instNeg
β€”Topology.IsInducing.continuous_iff
isInducing_embedProduct
continuous_prodMk
Homeomorph.isInducing
continuous_map πŸ“–mathematicalContinuous
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
AddUnits
instTopologicalSpaceAddUnits
instAddZeroClass
map
β€”continuous_iff
Continuous.comp
continuous_val
continuous_coe_neg
continuous_val πŸ“–mathematicalβ€”Continuous
AddUnits
instTopologicalSpaceAddUnits
val
β€”Continuous.fst
continuous_embedProduct
embedding_val_mk πŸ“–mathematicalContinuousOn
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
setOf
IsAddUnit
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
Topology.IsEmbedding
AddUnits
instTopologicalSpaceAddUnits
val
β€”isEmbedding_val_mk'
val_neg_eq_neg_val
instDiscreteTopology πŸ“–mathematicalβ€”DiscreteTopology
AddUnits
instTopologicalSpaceAddUnits
β€”Topology.IsEmbedding.discreteTopology
instDiscreteTopologyProd
AddOpposite.instDiscreteTopology
isEmbedding_embedProduct
instT2Space πŸ“–mathematicalβ€”T2Space
AddUnits
instTopologicalSpaceAddUnits
β€”Topology.IsEmbedding.t2Space
Prod.t2Space
AddOpposite.instT2Space
isEmbedding_embedProduct
isEmbedding_embedProduct πŸ“–mathematicalβ€”Topology.IsEmbedding
AddUnits
AddOpposite
instTopologicalSpaceAddUnits
instTopologicalSpaceProd
AddOpposite.instTopologicalSpaceAddOpposite
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
instAddZeroClass
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddOpposite.instAddZeroClass
AddMonoidHom.instFunLike
embedProduct
β€”isInducing_embedProduct
embedProduct_injective
isEmbedding_val_mk' πŸ“–mathematicalContinuousOn
setOf
IsAddUnit
val
AddUnits
instNeg
Topology.IsEmbedding
instTopologicalSpaceAddUnits
β€”topology_eq_inf
inf_eq_left
continuous_iff_le_induced
continuous_iff_continuousAt
nhds_induced
Filter.mem_map
Filter.mem_inf_principal
isAddUnit
val_injective
isInducing_embedProduct πŸ“–mathematicalβ€”Topology.IsInducing
AddUnits
AddOpposite
instTopologicalSpaceAddUnits
instTopologicalSpaceProd
AddOpposite.instTopologicalSpaceAddOpposite
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
instAddZeroClass
Prod.instAddZeroClass
AddMonoid.toAddZeroClass
AddOpposite.instAddZeroClass
AddMonoidHom.instFunLike
embedProduct
β€”β€”
isOpenMap_map πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
IsOpenMap
AddUnits
instTopologicalSpaceAddUnits
instAddZeroClass
map
β€”IsOpenMap.prodMap
IsOpenMap.comp
Homeomorph.isOpenMap
Set.ext
Set.image_congr
Set.mem_preimage
Set.mem_image
AddOpposite.exists
map_add
AddMonoidHomClass.toAddHomClass
AddMonoidHom.instAddMonoidHomClass
add_neg
map_zero
AddMonoidHomClass.toZeroHomClass
neg_add
mk_val
topology_eq_inf πŸ“–mathematicalβ€”instTopologicalSpaceAddUnits
TopologicalSpace
AddUnits
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
TopologicalSpace.induced
val
instNeg
β€”Topology.IsInducing.eq_induced
isInducing_embedProduct
induced_compose
induced_inf

MulOpposite

Definitions

NameCategoryTheorems
instTopologicalSpaceMulOpposite πŸ“–CompOp
48 mathmath: continuousConstSMul, map_op_nhds, instContinuousMul, FormalMultilinearSeries.ofScalarsSum_op, summable_unop, comap_unop_nhds, instLocallyCompactSpace, opContinuousLinearEquiv_symm_apply, NormedSpace.exp_op, hasSum_unop, instIsTopologicalGroupMulOpposite, continuous_unop, instIsTopologicalRingMulOpposite, Units.isEmbedding_embedProduct, instContinuousAddMulOpposite, instContinuousNegMulOpposite, ContinuousSMul.op, IsTopologicalSemiring.toOppositeIsModuleTopology, HasSum.op, hasSum_op, tsum_unop, comap_op_leftUniformSpace, instDiscreteTopology, continuousSMul, Units.isClosedEmbedding_embedProduct, map_unop_nhds, opHomeomorph_symm_apply, comap_op_nhds, instWeaklyLocallyCompactSpace, instContinuousInvMulOpposite, instProperSMulSubtypeMulOppositeMemSubgroupOpOfIsTopologicalGroupOfIsClosedCoe, Units.continuous_embedProduct, instProperSMulMulOppositeOfIsTopologicalGroup, instIsTopologicalSemiringMulOpposite, summable_op, opContinuousLinearEquiv_apply, comap_op_rightUniformSpace, instCompactSpace, continuous_op, tsum_op, Units.isInducing_embedProduct, instContinuousStarMulOpposite, NormedSpace.exp_unop, ContinuousMul.to_continuousSMul_op, opHomeomorph_apply, FormalMultilinearSeries.ofScalarsSum_unop, instT2Space, Summable.op
opHomeomorph πŸ“–CompOp
2 mathmath: opHomeomorph_symm_apply, opHomeomorph_apply

Theorems

NameKindAssumesProvesValidatesDepends On
comap_op_nhds πŸ“–mathematicalβ€”Filter.comap
MulOpposite
op
nhds
instTopologicalSpaceMulOpposite
unop
β€”Homeomorph.comap_nhds_eq
comap_unop_nhds πŸ“–mathematicalβ€”Filter.comap
MulOpposite
unop
nhds
instTopologicalSpaceMulOpposite
op
β€”Homeomorph.comap_nhds_eq
continuous_op πŸ“–mathematicalβ€”Continuous
MulOpposite
instTopologicalSpaceMulOpposite
op
β€”continuous_induced_rng
continuous_id
continuous_unop πŸ“–mathematicalβ€”Continuous
MulOpposite
instTopologicalSpaceMulOpposite
unop
β€”continuous_induced_dom
instCompactSpace πŸ“–mathematicalβ€”CompactSpace
MulOpposite
instTopologicalSpaceMulOpposite
β€”Homeomorph.compactSpace
instDiscreteTopology πŸ“–mathematicalβ€”DiscreteTopology
MulOpposite
instTopologicalSpaceMulOpposite
β€”Topology.IsEmbedding.discreteTopology
Homeomorph.isEmbedding
instLocallyCompactSpace πŸ“–mathematicalβ€”LocallyCompactSpace
MulOpposite
instTopologicalSpaceMulOpposite
β€”Topology.IsClosedEmbedding.locallyCompactSpace
Homeomorph.isClosedEmbedding
instT2Space πŸ“–mathematicalβ€”T2Space
MulOpposite
instTopologicalSpaceMulOpposite
β€”Homeomorph.t2Space
instWeaklyLocallyCompactSpace πŸ“–mathematicalβ€”WeaklyLocallyCompactSpace
MulOpposite
instTopologicalSpaceMulOpposite
β€”Topology.IsClosedEmbedding.weaklyLocallyCompactSpace
Homeomorph.isClosedEmbedding
map_op_nhds πŸ“–mathematicalβ€”Filter.map
MulOpposite
op
nhds
instTopologicalSpaceMulOpposite
β€”Homeomorph.map_nhds_eq
map_unop_nhds πŸ“–mathematicalβ€”Filter.map
MulOpposite
unop
nhds
instTopologicalSpaceMulOpposite
β€”Homeomorph.map_nhds_eq
opHomeomorph_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
MulOpposite
instTopologicalSpaceMulOpposite
EquivLike.toFunLike
Homeomorph.instEquivLike
opHomeomorph
op
β€”β€”
opHomeomorph_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
MulOpposite
instTopologicalSpaceMulOpposite
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
opHomeomorph
unop
β€”β€”

Units

Definitions

NameCategoryTheorems
instTopologicalSpaceUnits πŸ“–CompOp
66 mathmath: Matrix.SpecialLinearGroup.continuous_toGL, Complex.isQuotientCoveringMap_npow, ContinuousMap.val_unitsLift_apply_apply, Complex.instPathConnectedSpaceUnits, Matrix.SpecialLinearGroup.isClosedEmbedding_toGL, instCompactSpaceOfT1SpaceOfContinuousMul, continuous_val, instIsTopologicalGroupOfContinuousMul, Matrix.GeneralLinearGroup.continuous_det, isEmbedding_val_mk', instDiscreteTopology, instIsManifoldModelWithCornersSelf, instContinuousMul, instLocallyCompactSpaceOfT1SpaceOfContinuousMul, isQuotientCoveringMap_npow, Nonneg.val_unitsHomeomorphPos_symm_apply_coe, ContinuousMap.unitsOfForallIsUnit_apply, IsOpenUnits.isOpenEmbedding_unitsVal, Matrix.SpecialLinearGroup.isClosedEmbedding_mapGLInt, ContinuousMap.val_unitsLift_symm_apply_apply, instLieGroupModelWithCornersSelf, Matrix.SpecialLinearGroup.isInducing_mapGL, Nonneg.val_inv_unitsHomeomorphPos_symm_apply_coe, Submonoid.units_isCompact, Matrix.GeneralLinearGroup.continuous_upperRightHom, Submonoid.isOpen_units, symm_mapContinuousMulEquiv, ContinuousMap.unitsLift_apply_inv_apply, isEmbedding_embedProduct, isOpenMap_map, Nonneg.unitsHomeomorphPos_apply_coe, instWeaklyLocallyCompactSpaceOfT1SpaceOfContinuousMul, Matrix.SpecialLinearGroup.isEmbedding_toGL, continuous_iff, isQuotientCoveringMap_zpow, instContinuousStarUnits, embedding_val_mk, ContinuousMap.continuous_isUnit_unit, isEmbedding_val, Continuous.of_coeHom_comp, topology_eq_inf, Continuous.units_map, instT2Space, isOpenUnits_iff, ContinuousMap.canLift, toMulEquiv_mapContinuousMulEquiv, continuous_coe_inv, isClosedEmbedding_embedProduct, isEmbedding_valβ‚€, continuous_embedProduct, continuous_map, contMDiff_val, Matrix.SpecialLinearGroup.discreteSpecialLinearGroupIntRange, ContinuousMap.unitsLift_symm_apply_apply_inv', continuousSMul, isOpenEmbedding_val, chartAt_source, Matrix.SpecialLinearGroup.isInducing_toGL, isOpenMap_val, isInducing_embedProduct, mapContinuousMulEquiv_apply, Subgroup.IsArithmetic.discreteTopology, cyclotomicCharacter.continuous, instDiscreteTopologySubtypeGeneralLinearGroupMemSubgroupAdjoinNegOneOfIsTopologicalRingOfT2Space, Matrix.SpecialLinearGroup.isEmbedding_mapGL, chartAt_apply

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_coe_inv πŸ“–mathematicalβ€”Continuous
Units
instTopologicalSpaceUnits
val
instInv
β€”continuous_iff
continuous_id
continuous_embedProduct πŸ“–mathematicalβ€”Continuous
Units
MulOpposite
instTopologicalSpaceUnits
instTopologicalSpaceProd
MulOpposite.instTopologicalSpaceMulOpposite
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
instMulOneClass
Prod.instMulOneClass
Monoid.toMulOneClass
MulOpposite.instMulOneClass
MonoidHom.instFunLike
embedProduct
β€”continuous_induced_dom
continuous_iff πŸ“–mathematicalβ€”Continuous
Units
instTopologicalSpaceUnits
val
instInv
β€”Topology.IsInducing.continuous_iff
isInducing_embedProduct
Homeomorph.isInducing
continuous_map πŸ“–mathematicalContinuous
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
Units
instTopologicalSpaceUnits
instMulOneClass
map
β€”continuous_iff
Continuous.comp
continuous_val
continuous_coe_inv
continuous_val πŸ“–mathematicalβ€”Continuous
Units
instTopologicalSpaceUnits
val
β€”Continuous.fst
continuous_embedProduct
embedding_val_mk πŸ“–mathematicalContinuousOn
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
setOf
IsUnit
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
Topology.IsEmbedding
Units
instTopologicalSpaceUnits
val
β€”isEmbedding_val_mk'
val_inv_eq_inv_val
instDiscreteTopology πŸ“–mathematicalβ€”DiscreteTopology
Units
instTopologicalSpaceUnits
β€”Topology.IsEmbedding.discreteTopology
instDiscreteTopologyProd
MulOpposite.instDiscreteTopology
isEmbedding_embedProduct
instT2Space πŸ“–mathematicalβ€”T2Space
Units
instTopologicalSpaceUnits
β€”Topology.IsEmbedding.t2Space
Prod.t2Space
MulOpposite.instT2Space
isEmbedding_embedProduct
isEmbedding_embedProduct πŸ“–mathematicalβ€”Topology.IsEmbedding
Units
MulOpposite
instTopologicalSpaceUnits
instTopologicalSpaceProd
MulOpposite.instTopologicalSpaceMulOpposite
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
instMulOneClass
Prod.instMulOneClass
Monoid.toMulOneClass
MulOpposite.instMulOneClass
MonoidHom.instFunLike
embedProduct
β€”isInducing_embedProduct
embedProduct_injective
isEmbedding_val_mk' πŸ“–mathematicalContinuousOn
setOf
IsUnit
val
Units
instInv
Topology.IsEmbedding
instTopologicalSpaceUnits
β€”topology_eq_inf
inf_eq_left
continuous_iff_le_induced
continuous_iff_continuousAt
nhds_induced
Filter.mem_inf_principal
isUnit
val_injective
isInducing_embedProduct πŸ“–mathematicalβ€”Topology.IsInducing
Units
MulOpposite
instTopologicalSpaceUnits
instTopologicalSpaceProd
MulOpposite.instTopologicalSpaceMulOpposite
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
instMulOneClass
Prod.instMulOneClass
Monoid.toMulOneClass
MulOpposite.instMulOneClass
MonoidHom.instFunLike
embedProduct
β€”β€”
isOpenMap_map πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
IsOpenMap
Units
instTopologicalSpaceUnits
instMulOneClass
map
β€”IsOpenMap.prodMap
IsOpenMap.comp
Homeomorph.isOpenMap
Set.ext
Set.image_congr
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
mul_inv
map_one
MonoidHomClass.toOneHomClass
inv_mul
mk_val
topology_eq_inf πŸ“–mathematicalβ€”instTopologicalSpaceUnits
TopologicalSpace
Units
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
TopologicalSpace.induced
val
instInv
β€”Topology.IsInducing.eq_induced
isInducing_embedProduct
induced_compose
induced_inf

---

← Back to Index