GroupWithZero
đ Source: Mathlib/Topology/Algebra/GroupWithZero.lean
Statistics
Continuous
Theorems
ContinuousAt
Theorems
ContinuousInvâ
Theorems
ContinuousOn
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
div đ | mathematical | ContinuousOn | Pi.instDivDivInvMonoid.toDivGroupWithZero.toDivInvMonoid | â | ContinuousWithinAt.div |
div_const đ | mathematical | ContinuousOn | DivInvMonoid.toDiv | â | div_eq_mul_invmulcontinuousOn_const |
divâ đ | mathematical | ContinuousOn | DivInvMonoid.toDivGroupWithZero.toDivInvMonoid | â | div |
invâ đ | â | ContinuousOn | â | â | ContinuousWithinAt.invâ |
zpowâ đ | mathematical | ContinuousOn | DivInvMonoid.toZPowGroupWithZero.toDivInvMonoid | â | ContinuousWithinAt.zpowâ |
ContinuousWithinAt
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
div đ | mathematical | ContinuousWithinAt | Pi.instDivDivInvMonoid.toDivGroupWithZero.toDivInvMonoid | â | Filter.Tendsto.div |
div_const đ | mathematical | ContinuousWithinAt | DivInvMonoid.toDiv | â | Filter.Tendsto.div_const |
invâ đ | â | ContinuousWithinAt | â | â | Filter.Tendsto.invâ |
zpowâ đ | mathematical | ContinuousWithinAt | DivInvMonoid.toZPowGroupWithZero.toDivInvMonoid | â | Filter.Tendsto.zpowâ |
Filter
Theorems
Filter.Tendsto
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
div đ | mathematical | Filter.Tendstonhds | Pi.instDivDivInvMonoid.toDivGroupWithZero.toDivInvMonoid | â | div_eq_mul_invmulinvâ |
div_const đ | mathematical | Filter.Tendstonhds | DivInvMonoid.toDiv | â | div_eq_mul_invmultendsto_const_nhds |
invâ đ | â | Filter.Tendstonhds | â | â | comptendsto_invâ |
zpowâ đ | mathematical | Filter.Tendstonhds | DivInvMonoid.toZPowGroupWithZero.toDivInvMonoid | â | compContinuousAt.tendstocontinuousAt_zpowâ |
HasContinuousInvâ
Theorems
Homeomorph
Definitions
| Name | Category | Theorems |
|---|---|---|
invâ đ | CompOp | â |
mulLeftâ đ | CompOp | |
mulRightâ đ | CompOp |
Theorems
Units
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isEmbedding_valâ đ | mathematical | â | Topology.IsEmbeddingUnitsMonoidWithZero.toMonoidGroupWithZero.toMonoidWithZeroinstTopologicalSpaceUnitsval | â | ContinuousOn.monocontinuousOn_invâIsUnit.ne_zeroGroupWithZero.toNontrivial |
(root)
Definitions
Theorems
---