Documentation Verification Report

GroupWithZero

📁 Source: Mathlib/Topology/Algebra/GroupWithZero.lean

Statistics

MetricCount
DefinitionsContinuousInv₀, GroupWithZero, HasContinuousInv₀, inv₀, mulLeft₀, mulRight₀, unitsHomeomorphNeZero
7
Theoremscomp_div_cases, div, div_const, div₀, inv₀, zpow₀, comp_div_cases, div, div_const, div₀, inv₀, zpow₀, continuousAt_inv₀, of_nhds_one, div, div_const, div₀, inv₀, zpow₀, div, div_const, inv₀, zpow₀, div, div_const, inv₀, zpow₀, tendsto_mul_iff_of_ne_zero, of_nhds_one, coe_mulLeft₀, coe_mulRight₀, mulLeft₀_symm_apply, mulRight₀_symm_apply, isEmbedding_val₀, continuousAt_zpow₀, continuousOn_div, continuousOn_inv₀, continuousOn_zpow₀, map_mul_left_nhds_one₀, map_mul_left_nhds₀, map_mul_right_nhds_one₀, map_mul_right_nhds₀, nhds_inv₀, nhds_translation_mul_inv₀, tendsto_inv_iff₀, tendsto_inv₀
46
Total53

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
comp_div_cases 📖—Continuous
ContinuousAt
instTopologicalSpaceProd
Function.HasUncurry.uncurry
Function.hasUncurryInduction
Function.hasUncurryBase
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
Filter.Tendsto
SProd.sprod
Filter
Filter.instSProd
nhds
Top.top
Filter.instTop
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
——continuous_iff_continuousAt
ContinuousAt.comp_div_cases
continuousAt
div 📖mathematicalContinuousPi.instDiv
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
—div_eq_mul_inv
mul
inv₀
div_const 📖mathematicalContinuousDivInvMonoid.toDiv—div_eq_mul_inv
mul
continuous_const
div₀ 📖mathematicalContinuousDivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
—div_eq_mul_inv
mul
inv₀
inv₀ 📖—Continuous——continuous_iff_continuousAt
Filter.Tendsto.inv₀
tendsto
zpow₀ 📖mathematicalContinuousDivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
—continuous_iff_continuousAt
Filter.Tendsto.zpow₀
tendsto

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
comp_div_cases 📖—ContinuousAt
instTopologicalSpaceProd
Function.HasUncurry.uncurry
Function.hasUncurryInduction
Function.hasUncurryBase
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
Filter.Tendsto
SProd.sprod
Filter
Filter.instSProd
nhds
Top.top
Filter.instTop
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
——eq_1
div_zero
Filter.Tendsto.comp
Filter.Tendsto.prodMk
tendsto
continuousAt_id
Filter.tendsto_top
comp'
prodMk
continuousAt_id'
div₀
div 📖mathematicalContinuousAtPi.instDiv
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
—Filter.Tendsto.div
div_const 📖mathematicalContinuousAtDivInvMonoid.toDiv—Filter.Tendsto.div_const
div₀ 📖mathematicalContinuousAtDivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
—div
inv₀ 📖—ContinuousAt——Filter.Tendsto.inv₀
zpow₀ 📖mathematicalContinuousAtDivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
—Filter.Tendsto.zpow₀

ContinuousInv₀

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_inv₀ 📖mathematical—ContinuousAt——
of_nhds_one 📖mathematicalFilter.Tendsto
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
nhds
InvOneClass.toOne
ContinuousInv₀
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
—inv_ne_zero
ContinuousAt.eq_1
map_mul_left_nhds_one₀
nhds_translation_mul_inv₀
Filter.tendsto_map'_iff
Filter.tendsto_comap_iff
mul_inv_rev
mul_inv_cancel_right₀

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
div 📖mathematicalContinuousOnPi.instDiv
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
—ContinuousWithinAt.div
div_const 📖mathematicalContinuousOnDivInvMonoid.toDiv—div_eq_mul_inv
mul
continuousOn_const
div₀ 📖mathematicalContinuousOnDivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
—div
inv₀ 📖—ContinuousOn——ContinuousWithinAt.inv₀
zpow₀ 📖mathematicalContinuousOnDivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
—ContinuousWithinAt.zpow₀

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
div 📖mathematicalContinuousWithinAtPi.instDiv
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
—Filter.Tendsto.div
div_const 📖mathematicalContinuousWithinAtDivInvMonoid.toDiv—Filter.Tendsto.div_const
inv₀ 📖—ContinuousWithinAt——Filter.Tendsto.inv₀
zpow₀ 📖mathematicalContinuousWithinAtDivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
—Filter.Tendsto.zpow₀

Filter

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_mul_iff_of_ne_zero 📖mathematicalTendsto
nhds
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
—mul_div_cancel_right₀
GroupWithZero.toMulDivCancelClass
Tendsto.congr'
Eventually.mono
Tendsto.eventually_ne
Tendsto.div
Tendsto.mul

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
div 📖mathematicalFilter.Tendsto
nhds
Pi.instDiv
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
—div_eq_mul_inv
mul
inv₀
div_const 📖mathematicalFilter.Tendsto
nhds
DivInvMonoid.toDiv—div_eq_mul_inv
mul
tendsto_const_nhds
inv₀ 📖—Filter.Tendsto
nhds
——comp
tendsto_inv₀
zpow₀ 📖mathematicalFilter.Tendsto
nhds
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
—comp
ContinuousAt.tendsto
continuousAt_zpow₀

HasContinuousInv₀

Theorems

NameKindAssumesProvesValidatesDepends On
of_nhds_one 📖mathematicalFilter.Tendsto
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
nhds
InvOneClass.toOne
ContinuousInv₀
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
—ContinuousInv₀.of_nhds_one

Homeomorph

Definitions

NameCategoryTheorems
inv₀ 📖CompOp—
mulLeft₀ 📖CompOp
2 mathmath: mulLeft₀_symm_apply, coe_mulLeft₀
mulRight₀ 📖CompOp
2 mathmath: coe_mulRight₀, mulRight₀_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mulLeft₀ 📖mathematical—DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
mulLeft₀
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
——
coe_mulRight₀ 📖mathematical—DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
mulRight₀
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
——
mulLeft₀_symm_apply 📖mathematical—DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
mulLeft₀
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
——
mulRight₀_symm_apply 📖mathematical—DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
mulRight₀
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
——

Units

Theorems

NameKindAssumesProvesValidatesDepends On
isEmbedding_val₀ 📖mathematical—Topology.IsEmbedding
Units
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
instTopologicalSpaceUnits
val
—ContinuousOn.mono
continuousOn_inv₀
IsUnit.ne_zero
GroupWithZero.toNontrivial

(root)

Definitions

NameCategoryTheorems
ContinuousInv₀ 📖CompData
12 mathmath: IsStrictOrderedRing.toContinuousInv₀, hasContinuousInv₀_of_hasContMDiffInv₀, NNRat.instContinuousInv₀, ContinuousInv₀.of_nhds_one, NNReal.instContinuousInv₀, NormedDivisionRing.to_continuousInv₀, continuousInv₀_of_contMDiffInv₀, IsStrictOrderedRing.toHasContinuousInv₀, HasContinuousInv₀.of_nhds_one, NormedDivisionRing.to_hasContinuousInv₀, IsTopologicalDivisionRing.toContinuousInv₀, WithZeroTopology.instContinuousInv₀
GroupWithZero 📖CompData—
HasContinuousInv₀ 📖MathDef—
unitsHomeomorphNeZero 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_zpow₀ 📖mathematical—ContinuousAt
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
—zpow_natCast
continuousAt_pow
zpow_negSucc
LT.lt.not_ge
ContinuousAt.inv₀
pow_ne_zero
isReduced_of_noZeroDivisors
GroupWithZero.noZeroDivisors
continuousOn_div 📖mathematical—ContinuousOn
instTopologicalSpaceProd
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
setOf
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
—ContinuousOn.div
continuousOn_fst
continuousOn_snd
continuousOn_inv₀ 📖mathematical—ContinuousOn
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
—ContinuousAt.continuousWithinAt
ContinuousInv₀.continuousAt_inv₀
continuousOn_zpow₀ 📖mathematical—ContinuousOn
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
—ContinuousAt.continuousWithinAt
continuousAt_zpow₀
map_mul_left_nhds_one₀ 📖mathematical—Filter.map
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
nhds
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
—map_mul_left_nhds₀
mul_one
map_mul_left_nhds₀ 📖mathematical—Filter.map
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
nhds
—Homeomorph.map_nhds_eq
map_mul_right_nhds_one₀ 📖mathematical—Filter.map
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
nhds
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
—map_mul_right_nhds₀
one_mul
map_mul_right_nhds₀ 📖mathematical—Filter.map
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
nhds
—Homeomorph.map_nhds_eq
nhds_inv₀ 📖mathematical—nhds
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
Filter
Filter.instInv
—le_antisymm
Filter.inv_le_iff_le_inv
inv_inv
tendsto_inv₀
inv_ne_zero
nhds_translation_mul_inv₀ 📖mathematical—Filter.comap
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
nhds
InvOneClass.toOne
—Homeomorph.comap_nhds_eq
one_mul
tendsto_inv_iff₀ 📖mathematical—Filter.Tendsto
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
nhds
—nhds_inv₀
inv_inv
tendsto_inv₀ 📖mathematical—Filter.Tendsto
nhds
—ContinuousInv₀.continuousAt_inv₀

---

← Back to Index