Documentation Verification Report

Defs

📁 Source: Mathlib/Topology/Algebra/Group/Defs.lean

Statistics

MetricCount
DefinitionsContinuousDiv, ContinuousInv, ContinuousNeg, ContinuousSub, IsTopologicalAddGroup, IsTopologicalGroup
6
Theoremsdiv', inv, neg, sub, div', inv, neg, sub, continuous_div', continuous_inv, continuous_neg, div', inv, neg, sub, continuous_sub, div', inv, neg, sub, div', inv, neg, sub, toContinuousAdd, toContinuousNeg, to_continuousSub, toContinuousInv, toContinuousMul, to_continuousDiv
30
Total36

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
div' 📖—Continuous——comp₂
ContinuousDiv.continuous_div'
inv 📖—Continuous——comp
ContinuousInv.continuous_inv
neg 📖—Continuous——comp
ContinuousNeg.continuous_neg
sub 📖—Continuous——comp₂
ContinuousSub.continuous_sub

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
div' 📖—ContinuousAt——Filter.Tendsto.div'
inv 📖—ContinuousAt——Filter.Tendsto.inv
neg 📖—ContinuousAt——Filter.Tendsto.neg
sub 📖—ContinuousAt——Filter.Tendsto.sub

ContinuousDiv

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_div' 📖mathematical—Continuous
instTopologicalSpaceProd
——

ContinuousInv

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_inv 📖mathematical—Continuous——

ContinuousNeg

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_neg 📖mathematical—Continuous——

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
div' 📖—ContinuousOn——ContinuousWithinAt.div'
inv 📖—ContinuousOn——ContinuousWithinAt.inv
neg 📖—ContinuousOn——ContinuousWithinAt.neg
sub 📖—ContinuousOn——ContinuousWithinAt.sub

ContinuousSub

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_sub 📖mathematical—Continuous
instTopologicalSpaceProd
——

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
div' 📖—ContinuousWithinAt——Filter.Tendsto.div'
inv 📖—ContinuousWithinAt——Filter.Tendsto.inv
neg 📖—ContinuousWithinAt——Filter.Tendsto.neg
sub 📖—ContinuousWithinAt——Filter.Tendsto.sub

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
div' 📖—Filter.Tendsto
nhds
——comp
Continuous.tendsto
ContinuousDiv.continuous_div'
prodMk_nhds
inv 📖—Filter.Tendsto
nhds
——comp
Continuous.tendsto
ContinuousInv.continuous_inv
neg 📖—Filter.Tendsto
nhds
——comp
Continuous.tendsto
ContinuousNeg.continuous_neg
sub 📖—Filter.Tendsto
nhds
——comp
Continuous.tendsto
ContinuousSub.continuous_sub
prodMk_nhds

IsTopologicalAddGroup

Theorems

NameKindAssumesProvesValidatesDepends On
toContinuousAdd 📖mathematical—ContinuousAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
——
toContinuousNeg 📖mathematical—ContinuousNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
——
to_continuousSub 📖mathematical—ContinuousSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
—sub_eq_add_neg
Continuous.comp₂
continuous_add
toContinuousAdd
continuous_fst
Continuous.comp
ContinuousNeg.continuous_neg
toContinuousNeg
continuous_snd

IsTopologicalGroup

Theorems

NameKindAssumesProvesValidatesDepends On
toContinuousInv 📖mathematical—ContinuousInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
——
toContinuousMul 📖mathematical—ContinuousMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
——
to_continuousDiv 📖mathematical—ContinuousDiv
DivInvMonoid.toDiv
Group.toDivInvMonoid
—div_eq_mul_inv
Continuous.comp₂
continuous_mul
toContinuousMul
continuous_fst
Continuous.comp
ContinuousInv.continuous_inv
toContinuousInv
continuous_snd

(root)

Definitions

NameCategoryTheorems
ContinuousDiv 📖CompData
2 mathmath: IsTopologicalGroup.to_continuousDiv, SeparationQuotient.instContinuousDiv
ContinuousInv 📖CompData
16 mathmath: SeparationQuotient.instContinuousInv, instContinuousInvMultiplicativeOfContinuousNeg, Pi.has_continuous_inv', continuousInv_inf, ENNReal.instContinuousInv, continuousInv_of_discreteTopology, Prod.continuousInv, ContinuousInv.induced, OrderDual.instContinuousInv, IsTopologicalGroup.toContinuousInv, instContinuousInvULift, instContinuousInvMulOpposite, instContinuousInvSubtypeMemSubmonoidUnitaryOfContinuousStar, Topology.IsInducing.continuousInv, ContinuousInv.of_nhds_one, CategoryTheory.PreGaloisCategory.instContinuousInvAutFunctorFintypeCat
ContinuousNeg 📖CompData
26 mathmath: TrivSqZeroExt.instContinuousNeg, SeparationQuotient.instContinuousNeg, Pi.has_continuous_neg', instContinuousNegElemBallOfNat, continuousNeg_inf, OrderDual.instContinuousNeg, IsTopologicalAddGroup.toContinuousNeg, instContinuousNegElemSphereOfNat, instContinuousNegMulOpposite, instContinuousNegElemClosedBallOfNat, ContinuousNeg.of_nhds_zero, IsModuleTopology.continuousNeg, ContinuousMapZero.instContinuousNeg, instContinuousNegMatrix, IsTopologicalRing.toContinuousNeg, instContinuousNegAddOpposite, ContinuousNeg.of_continuousConstSMul, IsTopologicalSemiring.continuousNeg_of_mul, instContinuousNegULift, Prod.continuousNeg, continuousNeg_of_discreteTopology, EReal.instContinuousNeg, ContinuousNeg.induced, ContinuousLinearMapWOT.instContinuousNeg, Topology.IsInducing.continuousNeg, instContinuousNegAdditiveOfContinuousInv
ContinuousSub 📖CompData
4 mathmath: NNRat.instContinuousSub, IsTopologicalAddGroup.to_continuousSub, NNReal.instContinuousSub, SeparationQuotient.instContinuousSub
IsTopologicalAddGroup 📖CompData
53 mathmath: IsLeftUniformAddGroup.toIsTopologicalAddGroup, WeakSpace.instIsTopologicalAddGroup, ContinuousLinearMap.topologicalAddGroup, Prod.instIsTopologicalAddGroup, ContDiffMapSupportedIn.isTopologicalAddGroup, topologicalAddGroup_inf, IsTopologicalAddGroup.of_comm_of_nhds_zero, IsValuativeTopology.isTopologicalAddGroup, TestFunction.instIsTopologicalAddGroup, AddGroupFilterBasis.isTopologicalAddGroup, Topology.IsInducing.topologicalAddGroup, ContinuousAlternatingMap.instIsTopologicalAddGroup, ContinuousMap.instIsTopologicalAddGroup, IsModuleTopology.topologicalAddGroup, ProfiniteAddGrp.instIsTopologicalAddGroupCarrierToTopTotallyDisconnectedSpacePtProfiniteLimitConeCompForget₂ContinuousAddMonoidHomToProfiniteContinuousMap, QuotientAddGroup.instIsTopologicalAddGroup, ContinuousLinearMapWOT.instIsTopologicalAddGroup, WeakDual.instIsTopologicalAddGroup, CStarMatrix.instIsTopologicalAddGroup, IsUniformAddGroup.to_topologicalAddGroup, instIsTopologicalAddGroupAdditiveOfIsTopologicalGroup, OrderDual.instIsTopologicalAddGroup, topologicalAddGroup_induced, NonarchimedeanAddGroup.toIsTopologicalAddGroup, AddSubgroup.instIsTopologicalAddGroupSubtypeMem, instIsTopologicalAddGroupAddOpposite, IsTopologicalAddGroup.of_nhds_zero, AddGroupTopology.toIsTopologicalAddGroup, instIsTopologicalAddGroupMatrix, TopModuleCat.isTopologicalAddGroup, topologicalAddGroup_of_discreteTopology, Submodule.topologicalAddGroup_quotient, UniformConvergenceCLM.instIsTopologicalAddGroup, ContinuousAddMonoidHom.instIsTopologicalAddGroup, TopModuleCat.instIsTopologicalAddGroupCarrier, topologicalAddGroup_of_lieAddGroup, AddUnits.instIsTopologicalAddGroupOfContinuousAdd, IsRightUniformAddGroup.toIsTopologicalAddGroup, Submodule.topologicalAddGroup, instIsTopologicalAddGroupReal, WithIdealFilter.instIsTopologicalAddGroup, IsTopologicalAddTorsor.to_isTopologicalAddGroup, IsTopologicalAddGroup.of_nhds_zero', SeminormedAddCommGroup.toIsTopologicalAddGroup, IsTopologicalRing.to_topologicalAddGroup, SchwartzMap.instIsTopologicalAddGroup, Rat.instIsTopologicalAddGroup, ContinuousMultilinearMap.instIsTopologicalAddGroup, WeakBilin.instIsTopologicalAddGroup, ProfiniteAddGrp.topologicalAddGroup, WithSeminorms.topologicalAddGroup, LinearOrderedAddCommGroup.toIsTopologicalAddGroup, SeparationQuotient.instIsTopologicalAddGroup
IsTopologicalGroup 📖CompData
35 mathmath: ContinuousMap.instIsTopologicalGroup, IsUniformGroup.to_topologicalGroup, ContinuousMonoidHom.instIsTopologicalGroup, OrderDual.instIsTopologicalGroup, Matrix.SpecialLinearGroup.topologicalGroup, SeparationQuotient.instIsTopologicalGroup, topologicalGroup_of_discreteTopology, IsTopologicalGroup.of_comm_of_nhds_one, instIsTopologicalGroupMultiplicativeOfIsTopologicalAddGroup, topologicalGroup_inf, NonarchimedeanGroup.toIsTopologicalGroup, instIsTopologicalGroupSubtypeMemSubmonoidUnitaryOfContinuousMulOfContinuousStar, Units.instIsTopologicalGroupOfContinuousMul, IsTopologicalGroup.of_nhds_one, Subgroup.instIsTopologicalGroupSubtypeMem, ProfiniteGrp.topologicalGroup, Circle.instIsTopologicalGroup, IsRightUniformGroup.toIsTopologicalGroup, instIsTopologicalGroupMulOpposite, topologicalGroup_of_lieGroup, GroupFilterBasis.isTopologicalGroup, instIsTopologicalGroupAlgEquiv, GroupTopology.toIsTopologicalGroup, topologicalGroup_induced, IsTopologicalGroup.of_nhds_one', instIsTopologicalGroupULift, LinearOrderedCommGroup.toIsTopologicalGroup, Prod.instIsTopologicalGroup, CategoryTheory.PreGaloisCategory.instIsTopologicalGroupAutFunctorFintypeCat, Topology.IsInducing.topologicalGroup, QuotientGroup.instIsTopologicalGroup, SeminormedCommGroup.toIsTopologicalGroup, ProfiniteGrp.instIsTopologicalGroupCarrierToTopTotallyDisconnectedSpacePtProfiniteLimitConeCompForget₂ContinuousMonoidHomToProfiniteContinuousMap, IsLeftUniformGroup.toIsTopologicalGroup, Metric.sphere.instIsTopologicalGroup

---

← Back to Index