Documentation Verification Report

OpenMapping

📁 Source: Mathlib/Topology/Algebra/Group/OpenMapping.lean

Statistics

MetricCount
Definitions0
TheoremsisOpenMap_of_sigmaCompact, isOpenMap_of_sigmaCompact, isOpenMap_smul_of_sigmaCompact, isOpenMap_vadd_of_sigmaCompact, smul_singleton_mem_nhds_of_sigmaCompact, vadd_singleton_mem_nhds_of_sigmaCompact
6
Total6

AddMonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
isOpenMap_of_sigmaCompact 📖mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instFunLike
Continuous
IsOpenMapAddAction.continuousVAdd_compHom
ContinuousAdd.to_continuousVAdd
AddAction.isPretransitive_compHom
AddAction.Regular.isPretransitive
add_zero
isOpenMap_vadd_of_sigmaCompact

MonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
isOpenMap_of_sigmaCompact 📖mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instFunLike
Continuous
IsOpenMapMulAction.continuousSMul_compHom
ContinuousMul.to_continuousSMul
MulAction.isPretransitive_compHom
MulAction.Regular.isPretransitive
mul_one
isOpenMap_smul_of_sigmaCompact

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isOpenMap_smul_of_sigmaCompact 📖mathematicalIsOpenMap
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
smul_smul
inv_mul_cancel_right
Set.image_comp
Set.smul_singleton
smul_singleton_mem_nhds_of_sigmaCompact
Set.image_mul_right
inv_inv
mul_inv_cancel
IsOpenMap.image_mem_nhds
isOpenMap_mul_right
IsTopologicalGroup.toContinuousMul
isOpenMap_vadd_of_sigmaCompact 📖mathematicalIsOpenMap
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
isOpenMap_iff_nhds_le
Filter.le_map_iff
vadd_vadd
neg_add_cancel_right
Set.image_comp
Set.vadd_singleton
vadd_singleton_mem_nhds_of_sigmaCompact
Set.image_add_right
neg_neg
add_neg_cancel
IsOpenMap.image_mem_nhds
isOpenMap_add_right
IsTopologicalAddGroup.toContinuousAdd
smul_singleton_mem_nhds_of_sigmaCompact 📖mathematicalSet
Filter
Filter.instMembership
nhds
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.smul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set.instSingletonSet
exists_closed_nhds_one_inv_eq_mul_subset
countable_cover_nhds_of_sigmaCompact
IsScalarTower.continuousConstSMul
IsScalarTower.left
IsTopologicalGroup.toContinuousMul
nonempty_interior_of_iUnion_of_closed
instCountableProd
instCountableNat
Encodable.countable
IsCompact.isClosed
IsCompact.image
IsCompact.inter_right
isCompact_compactCovering
IsClosed.smul
Continuous.smul
continuous_id'
continuous_const
Set.smul_singleton
Set.eq_univ_iff_forall
MulAction.exists_smul_eq
exists_mem_compactCovering
Set.exists_set_mem_of_union_eq_top
Set.Nonempty.mono
interior_mono
Set.smul_subset_smul_right
Set.inter_subset_right
Set.smul_set_nonempty
interior_smul
ContinuousSMul.continuousConstSMul
smul_assoc
Set.isScalarTower'
interior_subset
mem_interior_iff_mem_nhds
Set.mem_inv_smul_set_iff
Set.Subset.trans
Set.smul_set_subset_smul
Set.inv_mem_inv
Filter.mem_of_superset
vadd_singleton_mem_nhds_of_sigmaCompact 📖mathematicalSet
Filter
Filter.instMembership
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
HVAdd.hVAdd
instHVAdd
Set.vadd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set.instSingletonSet
exists_closed_nhds_zero_neg_eq_add_subset
countable_cover_nhds_of_sigmaCompact
vadd_mem_nhds_self
VAddAssocClass.continuousConstVAdd
VAddAssocClass.left
IsTopologicalAddGroup.toContinuousAdd
nonempty_interior_of_iUnion_of_closed
instCountableProd
instCountableNat
Encodable.countable
IsCompact.isClosed
IsCompact.image
IsCompact.inter_right
isCompact_compactCovering
IsClosed.vadd
Continuous.vadd
continuous_id'
continuous_const
Set.vadd_singleton
Set.eq_univ_iff_forall
AddAction.exists_vadd_eq
exists_mem_compactCovering
Set.exists_set_mem_of_union_eq_top
Set.mem_iUnion
Set.mem_image
Set.mem_inter_iff
Set.Nonempty.mono
interior_mono
Set.vadd_subset_vadd_right
Set.inter_subset_right
Set.vadd_set_nonempty
interior_vadd
ContinuousVAdd.continuousConstVAdd
vadd_assoc
Set.vaddAssocClass'
interior_subset
mem_interior_iff_mem_nhds
Set.mem_neg_vadd_set_iff
Set.Subset.trans
Set.vadd_set_subset_vadd
Set.neg_mem_neg
Filter.mem_of_superset

---

← Back to Index