Documentation Verification Report

Pointwise

📁 Source: Mathlib/Topology/Algebra/Group/Pointwise.lean

Statistics

MetricCount
Definitions0
TheoremsisClosedMap_quotient, eq_zero_or_locallyCompactSpace_of_addGroup, eq_zero_or_locallyCompactSpace_of_group, add_closure_zero_eq, add_left_of_isCompact, add_right_of_isCompact, mul_closure_one_eq, mul_left_of_isCompact, mul_right_of_isCompact, smul_left_of_isCompact, vadd_left_of_isCompact, add_closure_zero_eq_closure, locallyCompactSpace_of_mem_nhds_of_addGroup, locallyCompactSpace_of_mem_nhds_of_group, mul_closure_one_eq_closure, exists_nhds_eq_one_of_image_mulLeft_inter_nonempty, exists_nhds_eq_one_of_image_mulRight_inter_nonempty, exists_nhds_eq_zero_of_image_addLeft_inter_nonempty, exists_nhds_eq_zero_of_image_addRight_inter_nonempty, add_closure, add_closure_zero_eq, add_left, add_right, closure_add, closure_div, closure_mul, closure_sub, div_closure, div_left, div_right, mul_closure, mul_closure_one_eq, mul_left, mul_right, sub_closure, sub_left, sub_right, regularSpace, t2Space_iff_zero_closed, t2Space_of_zero_sep, regularSpace, t2Space_iff_one_closed, t2Space_of_one_sep, isClosedMap_quotient, addGroup_inseparable_iff, add_singleton_mem_nhds, add_singleton_mem_nhds_of_nhds_zero, compl_add_closure_zero_eq, compl_add_closure_zero_eq_iff, compl_mul_closure_one_eq, compl_mul_closure_one_eq_iff, eq_zero_or_locallyCompactSpace_of_support_subset_isCompact_of_addGroup, eq_zero_or_locallyCompactSpace_of_support_subset_isCompact_of_group, exists_closed_nhds_one_inv_eq_mul_subset, exists_closed_nhds_zero_neg_eq_add_subset, group_inseparable_iff, mul_singleton_mem_nhds, mul_singleton_mem_nhds_of_nhds_one, singleton_add_mem_nhds, singleton_add_mem_nhds_of_nhds_zero, singleton_mul_mem_nhds, singleton_mul_mem_nhds_of_nhds_one, subset_add_closure_zero, subset_interior_add, subset_interior_add', subset_interior_add_left, subset_interior_add_right, subset_interior_div, subset_interior_div_left, subset_interior_div_right, subset_interior_mul, subset_interior_mul', subset_interior_mul_left, subset_interior_mul_right, subset_interior_smul, subset_interior_sub, subset_interior_sub_left, subset_interior_sub_right, subset_interior_vadd, subset_mul_closure_one
80
Total80

AddAction

Theorems

NameKindAssumesProvesValidatesDepends On
isClosedMap_quotient 📖mathematicalIsClosedMap
orbitRel
instTopologicalSpaceQuotient
Topology.IsQuotientMap.isClosed_preimage
isQuotientMap_quotient_mk'
quotient_preimage_image_eq_union_add
Set.biUnion_univ
Set.iUnion_vadd_left_image
Set.iUnion_congr_Prop
IsClosed.vadd_left_of_isCompact
isCompact_univ

HasCompactSupport

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_or_locallyCompactSpace_of_addGroup 📖mathematicalHasCompactSupport
Continuous
Pi.instZero
LocallyCompactSpace
eq_zero_or_locallyCompactSpace_of_support_subset_isCompact_of_addGroup
subset_tsupport
eq_zero_or_locallyCompactSpace_of_group 📖mathematicalHasCompactSupport
Continuous
Pi.instZero
LocallyCompactSpace
eq_zero_or_locallyCompactSpace_of_support_subset_isCompact_of_group
subset_tsupport

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
add_closure_zero_eq 📖mathematicalSet
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
closure
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Set.Subset.antisymm
closure_eq
vadd_set_closure_subset
ContinuousAdd.to_continuousVAdd
IsTopologicalAddGroup.toContinuousAdd
Set.add_singleton
Set.image_congr
add_zero
Set.image_id'
subset_add_closure_zero
add_left_of_isCompact 📖mathematicalIsCompactIsClosed
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
vadd_left_of_isCompact
IsTopologicalAddGroup.toContinuousNeg
ContinuousAdd.to_continuousVAdd
IsTopologicalAddGroup.toContinuousAdd
add_right_of_isCompact 📖mathematicalIsCompactIsClosed
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Set.image_op_vadd
vadd_left_of_isCompact
instContinuousNegAddOpposite
IsTopologicalAddGroup.toContinuousNeg
ContinuousAdd.to_continuousVAdd_op
IsTopologicalAddGroup.toContinuousAdd
IsCompact.image
AddOpposite.continuous_op
mul_closure_one_eq 📖mathematicalSet
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
closure
Set.instSingletonSet
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.Subset.antisymm
closure_eq
smul_set_closure_subset
ContinuousMul.to_continuousSMul
IsTopologicalGroup.toContinuousMul
Set.mul_singleton
Set.image_congr
mul_one
Set.image_id'
subset_mul_closure_one
mul_left_of_isCompact 📖mathematicalIsCompactIsClosed
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
smul_left_of_isCompact
IsTopologicalGroup.toContinuousInv
ContinuousMul.to_continuousSMul
IsTopologicalGroup.toContinuousMul
mul_right_of_isCompact 📖mathematicalIsCompactIsClosed
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set.image_op_smul
smul_left_of_isCompact
instContinuousInvMulOpposite
IsTopologicalGroup.toContinuousInv
ContinuousMul.to_continuousSMul_op
IsTopologicalGroup.toContinuousMul
IsCompact.image
MulOpposite.continuous_op
smul_left_of_isCompact 📖mathematicalIsCompactIsClosed
Set
Set.smul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
inv_smul_smul
smul_inv_smul
Continuous.prodMk
Continuous.fst
continuous_id'
Continuous.smul
Continuous.comp'
continuous_subtype_val
Continuous.snd
Continuous.inv
subset_antisymm
Set.instAntisymmSubset
Set.smul_subset_iff
Set.mem_image_of_mem
Set.image_subset_iff
Set.smul_mem_smul
isCompact_iff_compactSpace
IsProperMap.isClosedMap
IsProperMap.comp
isProperMap_snd_of_compactSpace
Homeomorph.isProperMap
preimage
continuous_snd
vadd_left_of_isCompact 📖mathematicalIsCompactIsClosed
HVAdd.hVAdd
Set
instHVAdd
Set.vadd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
neg_vadd_vadd
vadd_neg_vadd
Continuous.prodMk
Continuous.fst
continuous_id'
Continuous.vadd
Continuous.comp'
continuous_subtype_val
Continuous.snd
Continuous.neg
subset_antisymm
Set.instAntisymmSubset
Set.vadd_subset_iff
Set.mem_image_of_mem
Set.image_subset_iff
Set.vadd_mem_vadd
isCompact_iff_compactSpace
IsProperMap.isClosedMap
IsProperMap.comp
isProperMap_snd_of_compactSpace
Homeomorph.isProperMap
preimage
continuous_snd

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
add_closure_zero_eq_closure 📖mathematicalIsCompactSet
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
closure
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Set.Subset.antisymm
Set.vadd_subset_vadd_right
subset_closure
vadd_set_closure_subset
ContinuousAdd.to_continuousVAdd
IsTopologicalAddGroup.toContinuousAdd
Set.add_singleton
Set.image_congr
add_zero
Set.image_id'
IsClosed.vadd_left_of_isCompact
IsTopologicalAddGroup.toContinuousNeg
isClosed_closure
IsClosed.closure_subset_iff
subset_add_closure_zero
locallyCompactSpace_of_mem_nhds_of_addGroup 📖mathematicalIsCompact
Set
Filter
Filter.instMembership
nhds
LocallyCompactSpacevadd
VAddAssocClass.continuousConstVAdd
VAddAssocClass.left
IsTopologicalAddGroup.toContinuousAdd
Set.preimage_vadd_neg
ContinuousAt.preimage_mem_nhds
Continuous.continuousAt
ContinuousConstVAdd.continuous_const_vadd
neg_add_rev
neg_neg
neg_add_cancel_right
WeaklyLocallyCompactSpace.locallyCompactSpace
instR1Space
IsTopologicalAddGroup.regularSpace
locallyCompactSpace_of_mem_nhds_of_group 📖mathematicalIsCompact
Set
Filter
Filter.instMembership
nhds
LocallyCompactSpacesmul
IsScalarTower.continuousConstSMul
IsScalarTower.left
IsTopologicalGroup.toContinuousMul
Set.preimage_smul_inv
ContinuousAt.preimage_mem_nhds
Continuous.continuousAt
ContinuousConstSMul.continuous_const_smul
mul_inv_rev
inv_inv
inv_mul_cancel_right
WeaklyLocallyCompactSpace.locallyCompactSpace
instR1Space
IsTopologicalGroup.regularSpace
mul_closure_one_eq_closure 📖mathematicalIsCompactSet
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
closure
Set.instSingletonSet
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.Subset.antisymm
Set.smul_subset_smul_right
subset_closure
smul_set_closure_subset
ContinuousMul.to_continuousSMul
IsTopologicalGroup.toContinuousMul
Set.mul_singleton
Set.image_congr
mul_one
Set.image_id'
IsClosed.smul_left_of_isCompact
IsTopologicalGroup.toContinuousInv
isClosed_closure
IsClosed.closure_subset_iff
subset_mul_closure_one

IsDiscrete

Theorems

NameKindAssumesProvesValidatesDepends On
exists_nhds_eq_one_of_image_mulLeft_inter_nonempty 📖mathematicalIsDiscrete
SetLike.coe
Subgroup
Subgroup.instSetLike
Set
Filter
Filter.instMembership
nhds
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.inv
InvOneClass.toInv
nhds_inter_eq_singleton_of_mem_discrete
Subgroup.one_mem
exists_closed_nhds_one_inv_eq_mul_subset
Eq.subset
Set.instReflSubset
mul_inv_cancel_right
exists_nhds_eq_one_of_image_mulRight_inter_nonempty 📖mathematicalIsDiscrete
SetLike.coe
Subgroup
Subgroup.instSetLike
Set
Filter
Filter.instMembership
nhds
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.inv
InvOneClass.toInv
exists_nhds_eq_one_of_image_mulLeft_inter_nonempty
inv_eq_one
Subgroup.inv_mem
Set.nonempty_image_mulLeft_inv_inter_iff
exists_nhds_eq_zero_of_image_addLeft_inter_nonempty 📖mathematicalIsDiscrete
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
Set
Filter
Filter.instMembership
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Set.neg
NegZeroClass.toNeg
nhds_inter_eq_singleton_of_mem_discrete
AddSubgroup.zero_mem
exists_closed_nhds_zero_neg_eq_add_subset
Eq.subset
Set.instReflSubset
add_neg_cancel_right
exists_nhds_eq_zero_of_image_addRight_inter_nonempty 📖mathematicalIsDiscrete
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
Set
Filter
Filter.instMembership
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Set.neg
NegZeroClass.toNeg
exists_nhds_eq_zero_of_image_addLeft_inter_nonempty
neg_eq_zero
AddSubgroup.neg_mem
Set.nonempty_image_addLeft_neg_inter_iff

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
add_closure 📖mathematicalIsOpenSet
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
closure
HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.add_subset_iff
Set.neg_mem_neg
neg_add_cancel_left
mem_closure_iff
add_right
VAddCommClass.continuousConstVAdd
AddSemigroup.opposite_vaddCommClass
IsTopologicalAddGroup.toContinuousAdd
neg
IsTopologicalAddGroup.toContinuousNeg
Set.add_subset_add_left
subset_closure
add_closure_zero_eq 📖mathematicalIsOpenSet
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
closure
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
compl_add_closure_zero_eq_iff
IsClosed.add_closure_zero_eq
isClosed_compl
add_left 📖mathematicalIsOpenSet
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
vadd_left
add_right 📖mathematicalIsOpenSet
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Set.image_op_vadd
vadd_left
closure_add 📖mathematicalIsOpenSet
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
closure
neg_neg
neg_add_rev
neg_closure
IsTopologicalAddGroup.toContinuousNeg
add_closure
neg
closure_div 📖mathematicalIsOpenSet
Set.div
DivInvMonoid.toDiv
Group.toDivInvMonoid
closure
div_eq_mul_inv
closure_mul
inv
IsTopologicalGroup.toContinuousInv
closure_mul 📖mathematicalIsOpenSet
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
closure
inv_inv
mul_inv_rev
inv_closure
IsTopologicalGroup.toContinuousInv
mul_closure
inv
closure_sub 📖mathematicalIsOpenSet
Set.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
closure
sub_eq_add_neg
closure_add
neg
IsTopologicalAddGroup.toContinuousNeg
div_closure 📖mathematicalIsOpenSet
Set.div
DivInvMonoid.toDiv
Group.toDivInvMonoid
closure
div_eq_mul_inv
inv_closure
IsTopologicalGroup.toContinuousInv
mul_closure
div_left 📖mathematicalIsOpenSet
Set.div
DivInvMonoid.toDiv
Group.toDivInvMonoid
Set.iUnion_div_left_image
isOpen_biUnion
isOpenMap_div_left
div_right 📖mathematicalIsOpenSet
Set.div
DivInvMonoid.toDiv
Group.toDivInvMonoid
Set.iUnion_div_right_image
isOpen_biUnion
isOpenMap_div_right
mul_closure 📖mathematicalIsOpenSet
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
closure
HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.mul_subset_iff
Set.inv_mem_inv
inv_mul_cancel_left
mem_closure_iff
mul_right
SMulCommClass.continuousConstSMul
Semigroup.opposite_smulCommClass
IsTopologicalGroup.toContinuousMul
inv
IsTopologicalGroup.toContinuousInv
Set.mul_subset_mul_left
subset_closure
mul_closure_one_eq 📖mathematicalIsOpenSet
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
closure
Set.instSingletonSet
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
compl_mul_closure_one_eq_iff
IsClosed.mul_closure_one_eq
isClosed_compl
mul_left 📖mathematicalIsOpenSet
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
smul_left
mul_right 📖mathematicalIsOpenSet
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set.image_op_smul
smul_left
sub_closure 📖mathematicalIsOpenSet
Set.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
closure
sub_eq_add_neg
neg_closure
IsTopologicalAddGroup.toContinuousNeg
add_closure
sub_left 📖mathematicalIsOpenSet
Set.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
Set.iUnion_sub_left_image
isOpen_biUnion
isOpenMap_sub_left
sub_right 📖mathematicalIsOpenSet
Set.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
Set.iUnion_sub_right_image
isOpen_biUnion
isOpenMap_sub_right

IsTopologicalAddGroup

Theorems

NameKindAssumesProvesValidatesDepends On
regularSpace 📖mathematicalRegularSpaceRegularSpace.of_exists_mem_nhds_isClosed_subset
Continuous.tendsto'
continuous_add
toContinuousAdd
add_zero
mem_nhds_prod_iff
Filter.mem_of_superset
subset_closure
isClosed_closure
Set.subset_add_left
mem_interior_iff_mem_nhds
IsOpen.closure_add
isOpen_interior
Set.add_subset_add_left
interior_subset
Set.image_prod
Set.image_subset_iff
t2Space_iff_zero_closed 📖mathematicalT2Space
IsClosed
Set
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
isClosed_singleton
T2Space.t1Space
t1Space
toContinuousAdd
T25Space.t2Space
T3Space.t25Space
instT3Space
T1Space.t0Space
regularSpace
t2Space_of_zero_sep 📖mathematicalSet
Filter
Filter.instMembership
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Set.instMembership
T2Spacet1Space_iff_specializes_imp_eq
by_contra
add_neg_eq_zero
mem_of_mem_nhds
Specializes.map
continuous_add_right
toContinuousAdd
add_neg_cancel
T25Space.t2Space
T3Space.t25Space
instT3Space
T1Space.t0Space
regularSpace

IsTopologicalGroup

Theorems

NameKindAssumesProvesValidatesDepends On
regularSpace 📖mathematicalRegularSpaceRegularSpace.of_exists_mem_nhds_isClosed_subset
Continuous.tendsto'
continuous_mul
toContinuousMul
mul_one
mem_nhds_prod_iff
Filter.mem_of_superset
subset_closure
isClosed_closure
Set.subset_mul_left
mem_interior_iff_mem_nhds
IsOpen.closure_mul
isOpen_interior
Set.mul_subset_mul_left
interior_subset
Set.image_prod
Set.image_subset_iff
t2Space_iff_one_closed 📖mathematicalT2Space
IsClosed
Set
Set.instSingletonSet
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
isClosed_singleton
T2Space.t1Space
t1Space
toContinuousMul
T25Space.t2Space
T3Space.t25Space
instT3Space
T1Space.t0Space
regularSpace
t2Space_of_one_sep 📖mathematicalSet
Filter
Filter.instMembership
nhds
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.instMembership
T2Spacet1Space_iff_specializes_imp_eq
by_contra
mul_inv_eq_one
mem_of_mem_nhds
Specializes.map
continuous_mul_right
toContinuousMul
mul_inv_cancel
T25Space.t2Space
T3Space.t25Space
instT3Space
T1Space.t0Space
regularSpace

MulAction

Theorems

NameKindAssumesProvesValidatesDepends On
isClosedMap_quotient 📖mathematicalIsClosedMap
orbitRel
instTopologicalSpaceQuotient
Topology.IsQuotientMap.isClosed_preimage
isQuotientMap_quotient_mk'
quotient_preimage_image_eq_union_mul
Set.biUnion_univ
Set.iUnion_smul_left_image
Set.iUnion_congr_Prop
IsClosed.smul_left_of_isCompact
isCompact_univ

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
addGroup_inseparable_iff 📖mathematicalInseparable
Set
Set.instMembership
closure
Set.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
Set.singleton_zero
specializes_iff_mem_closure
specializes_comm
instR0Space
instR1Space
IsTopologicalAddGroup.regularSpace
specializes_iff_inseparable
IsTopologicalAddGroup.toContinuousAdd
Topology.IsInducing.inseparable_iff
Topology.IsEmbedding.toIsInducing
Homeomorph.isEmbedding
add_neg_cancel
sub_eq_add_neg
add_singleton_mem_nhds 📖mathematicalSet
Filter
Filter.instMembership
nhds
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Set.add
Set.instSingletonSet
Set.add_singleton
vadd_mem_nhds_vadd
add_singleton_mem_nhds_of_nhds_zero 📖mathematicalSet
Filter
Filter.instMembership
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Set.instSingletonSet
zero_add
add_singleton_mem_nhds
compl_add_closure_zero_eq 📖mathematicalSet
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
closure
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Compl.compl
Set.instCompl
Set.Subset.antisymm
AddSubgroup.coe_topologicalClosure_bot
Set.mem_compl_iff
AddSubgroup.neg_mem
add_neg_cancel_right
subset_add_closure_zero
compl_add_closure_zero_eq_iff 📖mathematicalSet
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Compl.compl
Set.instCompl
closure
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
compl_compl
compl_add_closure_zero_eq
compl_mul_closure_one_eq 📖mathematicalSet
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
closure
Set.instSingletonSet
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Compl.compl
Set.instCompl
Set.Subset.antisymm
Subgroup.coe_topologicalClosure_bot
Subgroup.inv_mem
mul_inv_cancel_right
subset_mul_closure_one
compl_mul_closure_one_eq_iff 📖mathematicalSet
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Compl.compl
Set.instCompl
closure
Set.instSingletonSet
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
compl_compl
compl_mul_closure_one_eq
eq_zero_or_locallyCompactSpace_of_support_subset_isCompact_of_addGroup 📖mathematicalIsCompact
Set
Set.instHasSubset
Function.support
Continuous
Pi.instZero
LocallyCompactSpace
Mathlib.Tactic.Push.not_forall_eq
Filter.mem_of_superset
IsOpen.mem_nhds
Continuous.isOpen_support
IsCompact.locallyCompactSpace_of_mem_nhds_of_addGroup
eq_zero_or_locallyCompactSpace_of_support_subset_isCompact_of_group 📖mathematicalIsCompact
Set
Set.instHasSubset
Function.support
Continuous
Pi.instZero
LocallyCompactSpace
Mathlib.Tactic.Push.not_forall_eq
Filter.mem_of_superset
IsOpen.mem_nhds
Continuous.isOpen_support
IsCompact.locallyCompactSpace_of_mem_nhds_of_group
exists_closed_nhds_one_inv_eq_mul_subset 📖mathematicalSet
Filter
Filter.instMembership
nhds
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
IsClosed
Set.inv
InvOneClass.toInv
Set.instHasSubset
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
exists_open_nhds_one_mul_subset
IsTopologicalGroup.toContinuousMul
exists_mem_nhds_isClosed_subset
IsTopologicalGroup.regularSpace
IsOpen.mem_nhds
Filter.inter_mem
inv_mem_nhds_one
IsClosed.inter
IsClosed.inv
IsTopologicalGroup.toContinuousInv
Set.inter_inv
inv_inv
Set.inter_comm
Set.mul_subset_mul
Set.inter_subset_left
exists_closed_nhds_zero_neg_eq_add_subset 📖mathematicalSet
Filter
Filter.instMembership
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
IsClosed
Set.neg
NegZeroClass.toNeg
Set.instHasSubset
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
exists_open_nhds_zero_add_subset
IsTopologicalAddGroup.toContinuousAdd
exists_mem_nhds_isClosed_subset
IsTopologicalAddGroup.regularSpace
IsOpen.mem_nhds
Filter.inter_mem
neg_mem_nhds_zero
IsClosed.inter
IsClosed.neg
IsTopologicalAddGroup.toContinuousNeg
Set.inter_neg
neg_neg
Set.inter_comm
Set.add_subset_add
Set.inter_subset_left
group_inseparable_iff 📖mathematicalInseparable
Set
Set.instMembership
closure
Set.one
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
DivInvMonoid.toDiv
Group.toDivInvMonoid
Set.singleton_one
specializes_iff_mem_closure
specializes_comm
instR0Space
instR1Space
IsTopologicalGroup.regularSpace
specializes_iff_inseparable
IsTopologicalGroup.toContinuousMul
Topology.IsInducing.inseparable_iff
Topology.IsEmbedding.toIsInducing
Homeomorph.isEmbedding
mul_inv_cancel
div_eq_mul_inv
mul_singleton_mem_nhds 📖mathematicalSet
Filter
Filter.instMembership
nhds
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set.mul
Set.instSingletonSet
Set.mul_singleton
smul_mem_nhds_smul
mul_singleton_mem_nhds_of_nhds_one 📖mathematicalSet
Filter
Filter.instMembership
nhds
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set.instSingletonSet
one_mul
mul_singleton_mem_nhds
singleton_add_mem_nhds 📖mathematicalSet
Filter
Filter.instMembership
nhds
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Set.add
Set.instSingletonSet
vadd_eq_add
Set.singleton_vadd
vadd_mem_nhds_vadd_iff
singleton_add_mem_nhds_of_nhds_zero 📖mathematicalSet
Filter
Filter.instMembership
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Set.instSingletonSet
add_zero
singleton_add_mem_nhds
singleton_mul_mem_nhds 📖mathematicalSet
Filter
Filter.instMembership
nhds
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set.mul
Set.instSingletonSet
smul_eq_mul
Set.singleton_smul
smul_mem_nhds_smul_iff
singleton_mul_mem_nhds_of_nhds_one 📖mathematicalSet
Filter
Filter.instMembership
nhds
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set.instSingletonSet
mul_one
singleton_mul_mem_nhds
subset_add_closure_zero 📖mathematicalSet
Set.instHasSubset
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
closure
Set.instSingletonSet
AddZero.toZero
Set.add_singleton
Set.image_congr
add_zero
Set.image_id'
subset_refl
Set.instReflSubset
HasSubset.Subset.trans
Set.instIsTransSubset
Set.vadd_subset_vadd_left
subset_closure
subset_interior_add 📖mathematicalSet
Set.instHasSubset
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
interior
subset_interior_vadd
subset_interior_add' 📖mathematicalSet
Set.instHasSubset
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
interior
HasSubset.Subset.trans
Set.instIsTransSubset
Set.add_subset_add_left
interior_subset
subset_interior_add_left
subset_interior_add_left 📖mathematicalSet
Set.instHasSubset
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
interior
interior_maximal
Set.add_subset_add_right
interior_subset
IsOpen.add_right
isOpen_interior
subset_interior_add_right 📖mathematicalSet
Set.instHasSubset
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
interior
subset_interior_vadd_right
subset_interior_div 📖mathematicalSet
Set.instHasSubset
Set.div
DivInvMonoid.toDiv
Group.toDivInvMonoid
interior
HasSubset.Subset.trans
Set.instIsTransSubset
Set.div_subset_div_left
interior_subset
subset_interior_div_left
subset_interior_div_left 📖mathematicalSet
Set.instHasSubset
Set.div
DivInvMonoid.toDiv
Group.toDivInvMonoid
interior
interior_maximal
Set.div_subset_div_right
interior_subset
IsOpen.div_right
isOpen_interior
subset_interior_div_right 📖mathematicalSet
Set.instHasSubset
Set.div
DivInvMonoid.toDiv
Group.toDivInvMonoid
interior
interior_maximal
Set.div_subset_div_left
interior_subset
IsOpen.div_left
isOpen_interior
subset_interior_mul 📖mathematicalSet
Set.instHasSubset
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
interior
subset_interior_smul
subset_interior_mul' 📖mathematicalSet
Set.instHasSubset
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
interior
HasSubset.Subset.trans
Set.instIsTransSubset
Set.mul_subset_mul_left
interior_subset
subset_interior_mul_left
subset_interior_mul_left 📖mathematicalSet
Set.instHasSubset
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
interior
interior_maximal
Set.mul_subset_mul_right
interior_subset
IsOpen.mul_right
isOpen_interior
subset_interior_mul_right 📖mathematicalSet
Set.instHasSubset
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
interior
subset_interior_smul_right
subset_interior_smul 📖mathematicalSet
Set.instHasSubset
Set.smul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
interior
HasSubset.Subset.trans
Set.instIsTransSubset
Set.smul_subset_smul_right
interior_subset
subset_interior_smul_right
subset_interior_sub 📖mathematicalSet
Set.instHasSubset
Set.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
interior
HasSubset.Subset.trans
Set.instIsTransSubset
Set.sub_subset_sub_left
interior_subset
subset_interior_sub_left
subset_interior_sub_left 📖mathematicalSet
Set.instHasSubset
Set.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
interior
interior_maximal
Set.sub_subset_sub_right
interior_subset
IsOpen.sub_right
isOpen_interior
subset_interior_sub_right 📖mathematicalSet
Set.instHasSubset
Set.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
interior
interior_maximal
Set.sub_subset_sub_left
interior_subset
IsOpen.sub_left
isOpen_interior
subset_interior_vadd 📖mathematicalSet
Set.instHasSubset
HVAdd.hVAdd
instHVAdd
Set.vadd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
interior
HasSubset.Subset.trans
Set.instIsTransSubset
Set.vadd_subset_vadd_right
interior_subset
subset_interior_vadd_right
subset_mul_closure_one 📖mathematicalSet
Set.instHasSubset
Set.mul
MulOne.toMul
MulOneClass.toMulOne
closure
Set.instSingletonSet
MulOne.toOne
Set.mul_singleton
Set.image_congr
mul_one
Set.image_id'
Set.instReflSubset
HasSubset.Subset.trans
Set.instIsTransSubset
Set.smul_subset_smul_left
subset_closure

---

← Back to Index