Documentation Verification Report

NatInt

πŸ“ Source: Mathlib/Topology/Algebra/InfiniteSum/NatInt.lean

Statistics

MetricCount
Definitions0
Theoremseven_mul_odd, int_rec, nat_mul_neg, nat_mul_neg_add_one, of_add_one_of_neg_add_one, of_nat_of_neg, of_nat_of_neg_add_one, prod_range_mul, tendsto_prod_nat, zero_mul, even_add_odd, int_rec, nat_add_neg, nat_add_neg_add_one, of_add_one_of_neg_add_one, of_nat_of_neg, of_nat_of_neg_add_one, sum_range_add, tendsto_sum_nat, zero_add, comp_nat_add, even_mul_odd, hasProd_iff_tendsto_nat, int_rec, nat_mul_neg, nat_mul_neg_add_one, nat_tprod_vanishing, of_add_one_of_neg_add_one, of_nat_of_neg, of_nat_of_neg_add_one, prod_mul_tprod_nat_add, prod_mul_tprod_nat_mul', tendsto_atTop_one, tendsto_prod_tprod_nat, tprod_eq_zero_mul, tprod_of_nat_of_neg, alternating, comp_nat_add, even_add_odd, hasSum_iff_tendsto_nat, int_rec, nat_add_neg, nat_add_neg_add_one, nat_tsum_vanishing, of_add_one_of_neg_add_one, of_nat_of_neg, of_nat_of_neg_add_one, sum_add_tsum_nat_add, sum_add_tsum_nat_add', tendsto_atTop_zero, tendsto_sum_tsum_nat, tsum_eq_zero_add, tsum_of_nat_of_neg, cauchySeq_finset_iff_nat_tprod_vanishing, cauchySeq_finset_iff_nat_tsum_vanishing, hasProd_nat_add_iff, hasProd_nat_add_iff', hasSum_nat_add_iff, hasSum_nat_add_iff', multipliable_iff_nat_tprod_vanishing, multipliable_int_iff_multipliable_nat_and_neg, multipliable_int_iff_multipliable_nat_and_neg_add_one, multipliable_nat_add_iff, multipliable_pnat_iff_multipliable_nat, multipliable_pnat_iff_multipliable_succ, pnat_multipliable_iff_multipliable_succ, rel_iSup_prod, rel_iSup_sum, rel_iSup_tprod, rel_iSup_tsum, rel_sup_add, rel_sup_mul, summable_iff_nat_tsum_vanishing, summable_int_iff_summable_nat_and_neg, summable_int_iff_summable_nat_and_neg_add_zero, summable_nat_add_iff, summable_pnat_iff_summable_nat, summable_pnat_iff_summable_succ, tendsto_prod_nat_add, tendsto_sum_nat_add, tprod_eq_zero_mul', tprod_even_mul_odd, tprod_iSup_decodeβ‚‚, tprod_iUnion_decodeβ‚‚, tprod_int_eq_zero_mul_tprod_pnat, tprod_int_eq_zero_mul_tprod_pnat_sq, tprod_int_rec, tprod_nat_mul_neg, tprod_nat_mul_neg_add_one, tprod_of_add_one_of_neg_add_one, tprod_of_nat_of_neg_add_one, tprod_pnat_eq_tprod_succ, tprod_zero_pnat_eq_tprod_nat, tsum_eq_zero_add', tsum_even_add_odd, tsum_iSup_decodeβ‚‚, tsum_iUnion_decodeβ‚‚, tsum_int_eq_zero_add_tsum_pnat, tsum_int_eq_zero_add_two_mul_tsum_pnat, tsum_int_rec, tsum_nat_add_neg, tsum_nat_add_neg_add_one, tsum_of_add_one_of_neg_add_one, tsum_of_nat_of_neg_add_one, tsum_pnat_eq_tsum_succ, tsum_zero_pnat_eq_tsum_nat
106
Total106

HasProd

Theorems

NameKindAssumesProvesValidatesDepends On
even_mul_odd πŸ“–mathematicalHasProd
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”mul_right_injectiveβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
two_ne_zero'
Function.Injective.hasProd_range_iff
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
mul_isCompl
range_two_mul
range_two_mul_add_one
Nat.isCompl_even_odd
int_rec πŸ“–mathematicalHasProd
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”of_nat_of_neg_add_one
nat_mul_neg πŸ“–mathematicalHasProd
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”hasProd_of_prod_eq
le_total
Finset.mem_image
Int.natCast_natAbs
Int.instIsOrderedAddMonoid
abs_of_nonpos
Int.instAddLeftMono
neg_neg
Finset.prod_mul_distrib
Finset.prod_subset_one_on_sdiff
Finset.inter_subset_union
Finset.prod_union_inter
Finset.prod_image
Int.instCharZero
mul
hasProd_ite_eq
SummationFilter.instLeAtTopUnconditional
nat_mul_neg_add_one πŸ“–mathematicalHasProd
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”hasProd_of_prod_eq
Function.Injective.injOn
Nat.cast_injective
Int.instCharZero
Finset.prod_union
Finset.prod_image
Finset.prod_mul_distrib
of_add_one_of_neg_add_one πŸ“–mathematicalHasProd
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”of_nat_of_neg_add_one
zero_mul
mul_comm
of_nat_of_neg πŸ“–mathematicalHasProd
CommGroup.toCommMonoid
SummationFilter.unconditional
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
β€”of_nat_of_neg_add_one
IsTopologicalGroup.toContinuousMul
neg_zero
Nat.cast_zero
Finset.prod_range_one
hasProd_nat_add_iff'
mul_div_assoc'
of_nat_of_neg_add_one πŸ“–mathematicalHasProd
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”disjoint_iff_inf_le
codisjoint_iff_le_sup
Int.instCharZero
mul_isCompl
Function.Injective.hasProd_range_iff
Nat.cast_injective
prod_range_mul πŸ“–mathematicalHasProd
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset.prod
Finset.range
β€”mul_compl
Finset.hasProd
SummationFilter.instLeAtTopUnconditional
Equiv.hasProd_iff
tendsto_prod_nat πŸ“–mathematicalHasProd
SummationFilter.unconditional
Filter.Tendsto
Finset.prod
Finset.range
Filter.atTop
Nat.instPreorder
nhds
β€”Filter.Tendsto.comp
Filter.tendsto_finset_range
zero_mul πŸ“–mathematicalHasProd
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”Finset.prod_range_one
prod_range_mul

HasSum

Theorems

NameKindAssumesProvesValidatesDepends On
even_add_odd πŸ“–mathematicalHasSum
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”mul_right_injectiveβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
two_ne_zero'
Function.Injective.hasSum_range_iff
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
add_isCompl
range_two_mul
range_two_mul_add_one
Nat.isCompl_even_odd
int_rec πŸ“–mathematicalHasSum
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”of_nat_of_neg_add_one
nat_add_neg πŸ“–mathematicalHasSum
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”hasSum_of_sum_eq
Finset.mem_union
Finset.mem_image
le_total
Int.natCast_natAbs
abs_eq_self
Int.instIsOrderedAddMonoid
abs_of_nonpos
Int.instAddLeftMono
neg_neg
Finset.sum_add_distrib
Finset.sum_subset_zero_on_sdiff
Finset.inter_subset_union
Finset.mem_sdiff
neg_eq_zero
Finset.mem_inter
Finset.sum_union_inter
Finset.sum_image
Set.injOn_of_eq_iff_eq
Int.instCharZero
add
hasSum_ite_eq
SummationFilter.instLeAtTopUnconditional
nat_add_neg_add_one πŸ“–mathematicalHasSum
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”hasSum_of_sum_eq
Function.Injective.injOn
Nat.cast_injective
Int.instCharZero
Finset.mem_union
Finset.mem_image
Finset.mem_preimage
Finset.sum_union
Finset.disjoint_iff_ne
Finset.sum_image
Finset.sum_add_distrib
of_add_one_of_neg_add_one πŸ“–mathematicalHasSum
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”of_nat_of_neg_add_one
zero_add
add_comm
of_nat_of_neg πŸ“–mathematicalHasSum
AddCommGroup.toAddCommMonoid
SummationFilter.unconditional
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
β€”of_nat_of_neg_add_one
IsTopologicalAddGroup.toContinuousAdd
neg_zero
Nat.cast_zero
Finset.sum_range_one
hasSum_nat_add_iff'
add_sub_assoc'
of_nat_of_neg_add_one πŸ“–mathematicalHasSum
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”disjoint_iff_inf_le
codisjoint_iff_le_sup
Set.mem_univ
Set.mem_union
Set.mem_range
Int.instCharZero
add_isCompl
Function.Injective.hasSum_range_iff
Nat.cast_injective
sum_range_add πŸ“–mathematicalHasSum
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finset.range
β€”add_compl
Finset.hasSum
SummationFilter.instLeAtTopUnconditional
Equiv.hasSum_iff
tendsto_sum_nat πŸ“–mathematicalHasSum
SummationFilter.unconditional
Filter.Tendsto
Finset.sum
Finset.range
Filter.atTop
Nat.instPreorder
nhds
β€”Filter.Tendsto.comp
Filter.tendsto_finset_range
zero_add πŸ“–mathematicalHasSum
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Finset.sum_range_one
sum_range_add

Multipliable

Theorems

NameKindAssumesProvesValidatesDepends On
comp_nat_add πŸ“–β€”Multipliable
SummationFilter.unconditional
β€”β€”HasProd.multipliable
HasProd.prod_range_mul
hasProd
even_mul_odd πŸ“–β€”Multipliable
SummationFilter.unconditional
β€”β€”HasProd.multipliable
HasProd.even_mul_odd
hasProd
hasProd_iff_tendsto_nat πŸ“–mathematicalMultipliable
SummationFilter.unconditional
HasProd
Filter.Tendsto
Finset.prod
Finset.range
Filter.atTop
Nat.instPreorder
nhds
β€”HasProd.tendsto_prod_nat
tendsto_nhds_unique
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
hasProd
int_rec πŸ“–β€”Multipliable
SummationFilter.unconditional
β€”β€”of_nat_of_neg_add_one
nat_mul_neg πŸ“–mathematicalMultipliable
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”HasProd.multipliable
HasProd.nat_mul_neg
hasProd
nat_mul_neg_add_one πŸ“–mathematicalMultipliable
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”HasProd.multipliable
HasProd.nat_mul_neg_add_one
hasProd
nat_tprod_vanishing πŸ“–mathematicalMultipliable
CommGroup.toCommMonoid
SummationFilter.unconditional
Set
Filter
Filter.instMembership
nhds
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Set.instMembership
tprod
Set.Elem
β€”isUniformGroup_of_commGroup
cauchySeq_finset_iff_nat_tprod_vanishing
Filter.Tendsto.cauchySeq
hasProd
of_add_one_of_neg_add_one πŸ“–β€”Multipliable
SummationFilter.unconditional
β€”β€”HasProd.multipliable
HasProd.of_add_one_of_neg_add_one
hasProd
of_nat_of_neg πŸ“–β€”Multipliable
CommGroup.toCommMonoid
SummationFilter.unconditional
β€”β€”HasProd.multipliable
HasProd.of_nat_of_neg
hasProd
of_nat_of_neg_add_one πŸ“–β€”Multipliable
SummationFilter.unconditional
β€”β€”HasProd.multipliable
HasProd.of_nat_of_neg_add_one
hasProd
prod_mul_tprod_nat_add πŸ“–mathematicalMultipliable
CommGroup.toCommMonoid
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Finset.prod
Finset.range
tprod
β€”prod_mul_tprod_nat_mul'
IsTopologicalGroup.toContinuousMul
multipliable_nat_add_iff
prod_mul_tprod_nat_mul' πŸ“–mathematicalMultipliable
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset.prod
Finset.range
tprod
β€”HasProd.tprod_eq
SummationFilter.instNeBotUnconditional
HasProd.prod_range_mul
hasProd
tendsto_atTop_one πŸ“–mathematicalMultipliable
CommGroup.toCommMonoid
SummationFilter.unconditional
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
β€”Nat.cofinite_eq_atTop
tendsto_cofinite_one
tendsto_prod_tprod_nat πŸ“–mathematicalMultipliable
SummationFilter.unconditional
Filter.Tendsto
Finset.prod
Finset.range
Filter.atTop
Nat.instPreorder
nhds
tprod
β€”HasProd.tendsto_prod_nat
hasProd
tprod_eq_zero_mul πŸ“–mathematicalMultipliable
CommGroup.toCommMonoid
SummationFilter.unconditional
tprod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”tprod_eq_zero_mul'
IsTopologicalGroup.toContinuousMul
multipliable_nat_add_iff
tprod_of_nat_of_neg πŸ“–mathematicalMultipliable
CommGroup.toCommMonoid
SummationFilter.unconditional
tprod
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
β€”HasProd.tprod_eq
SummationFilter.instNeBotUnconditional
HasProd.of_nat_of_neg
hasProd

Summable

Theorems

NameKindAssumesProvesValidatesDepends On
alternating πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”even_add_odd
IsTopologicalAddGroup.toContinuousAdd
IsUniformAddGroup.to_topologicalAddGroup
Even.neg_pow
Distrib.rightDistribClass
Nat.instAtLeastTwoHAddOfNat
one_pow
one_mul
comp_injective
mul_right_injectiveβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
two_ne_zero'
pow_add
pow_one
mul_neg
mul_one
neg_mul
neg
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
comp_nat_add πŸ“–β€”Summable
SummationFilter.unconditional
β€”β€”HasSum.summable
HasSum.sum_range_add
hasSum
even_add_odd πŸ“–β€”Summable
SummationFilter.unconditional
β€”β€”HasSum.summable
HasSum.even_add_odd
hasSum
hasSum_iff_tendsto_nat πŸ“–mathematicalSummable
SummationFilter.unconditional
HasSum
Filter.Tendsto
Finset.sum
Finset.range
Filter.atTop
Nat.instPreorder
nhds
β€”HasSum.tendsto_sum_nat
tendsto_nhds_unique
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
hasSum
int_rec πŸ“–β€”Summable
SummationFilter.unconditional
β€”β€”of_nat_of_neg_add_one
nat_add_neg πŸ“–mathematicalSummable
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”HasSum.summable
HasSum.nat_add_neg
hasSum
nat_add_neg_add_one πŸ“–mathematicalSummable
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”HasSum.summable
HasSum.nat_add_neg_add_one
hasSum
nat_tsum_vanishing πŸ“–mathematicalSummable
AddCommGroup.toAddCommMonoid
SummationFilter.unconditional
Set
Filter
Filter.instMembership
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set.instMembership
tsum
Set.Elem
β€”isUniformAddGroup_of_addCommGroup
cauchySeq_finset_iff_nat_tsum_vanishing
Filter.Tendsto.cauchySeq
hasSum
of_add_one_of_neg_add_one πŸ“–β€”Summable
SummationFilter.unconditional
β€”β€”HasSum.summable
HasSum.of_add_one_of_neg_add_one
hasSum
of_nat_of_neg πŸ“–β€”Summable
AddCommGroup.toAddCommMonoid
SummationFilter.unconditional
β€”β€”HasSum.summable
HasSum.of_nat_of_neg
hasSum
of_nat_of_neg_add_one πŸ“–β€”Summable
SummationFilter.unconditional
β€”β€”HasSum.summable
HasSum.of_nat_of_neg_add_one
hasSum
sum_add_tsum_nat_add πŸ“–mathematicalSummable
AddCommGroup.toAddCommMonoid
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Finset.sum
Finset.range
tsum
β€”sum_add_tsum_nat_add'
IsTopologicalAddGroup.toContinuousAdd
summable_nat_add_iff
sum_add_tsum_nat_add' πŸ“–mathematicalSummable
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finset.range
tsum
β€”HasSum.tsum_eq
SummationFilter.instNeBotUnconditional
HasSum.sum_range_add
hasSum
tendsto_atTop_zero πŸ“–mathematicalSummable
AddCommGroup.toAddCommMonoid
SummationFilter.unconditional
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”Nat.cofinite_eq_atTop
tendsto_cofinite_zero
tendsto_sum_tsum_nat πŸ“–mathematicalSummable
SummationFilter.unconditional
Filter.Tendsto
Finset.sum
Finset.range
Filter.atTop
Nat.instPreorder
nhds
tsum
β€”HasSum.tendsto_sum_nat
hasSum
tsum_eq_zero_add πŸ“–mathematicalSummable
AddCommGroup.toAddCommMonoid
SummationFilter.unconditional
tsum
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”tsum_eq_zero_add'
IsTopologicalAddGroup.toContinuousAdd
summable_nat_add_iff
tsum_of_nat_of_neg πŸ“–mathematicalSummable
AddCommGroup.toAddCommMonoid
SummationFilter.unconditional
tsum
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
β€”HasSum.tsum_eq
SummationFilter.instNeBotUnconditional
HasSum.of_nat_of_neg
hasSum

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_finset_iff_nat_tprod_vanishing πŸ“–mathematicalβ€”CauchySeq
Finset
PartialOrder.toPreorder
Finset.partialOrder
Finset.prod
CommGroup.toCommMonoid
Set
Set.instMembership
tprod
Set.Elem
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
β€”cauchySeq_finset_iff_tprod_vanishing
Set.disjoint_left
LE.le.not_gt
Finset.le_max'
le_of_not_gt
Finset.mem_range
cauchySeq_finset_iff_nat_tsum_vanishing πŸ“–mathematicalβ€”CauchySeq
Finset
PartialOrder.toPreorder
Finset.partialOrder
Finset.sum
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
tsum
Set.Elem
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
β€”cauchySeq_finset_iff_tsum_vanishing
Set.disjoint_left
LE.le.not_gt
Finset.le_max'
le_of_not_gt
Finset.mem_range
hasProd_nat_add_iff πŸ“–mathematicalβ€”HasProd
CommGroup.toCommMonoid
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Finset.prod
Finset.range
β€”Equiv.hasProd_iff
coe_notMemRangeEquiv_symm
Finset.hasProd_compl_iff
hasProd_nat_add_iff' πŸ“–mathematicalβ€”HasProd
CommGroup.toCommMonoid
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
Finset.prod
Finset.range
SummationFilter.unconditional
β€”div_mul_cancel
hasSum_nat_add_iff πŸ“–mathematicalβ€”HasSum
AddCommGroup.toAddCommMonoid
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Finset.sum
Finset.range
β€”Equiv.hasSum_iff
coe_notMemRangeEquiv_symm
Finset.hasSum_compl_iff
hasSum_nat_add_iff' πŸ“–mathematicalβ€”HasSum
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Finset.sum
Finset.range
SummationFilter.unconditional
β€”hasSum_nat_add_iff
sub_add_cancel
multipliable_iff_nat_tprod_vanishing πŸ“–mathematicalβ€”Multipliable
CommGroup.toCommMonoid
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
Set
Set.instMembership
tprod
Set.Elem
β€”multipliable_iff_cauchySeq_finset
cauchySeq_finset_iff_nat_tprod_vanishing
multipliable_int_iff_multipliable_nat_and_neg πŸ“–mathematicalβ€”Multipliable
CommGroup.toCommMonoid
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
β€”Multipliable.comp_injective
Nat.cast_injective
Int.instCharZero
neg_injective
Multipliable.of_nat_of_neg
IsUniformGroup.to_topologicalGroup
multipliable_int_iff_multipliable_nat_and_neg_add_one πŸ“–mathematicalβ€”Multipliable
CommGroup.toCommMonoid
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
β€”Multipliable.comp_injective
Nat.cast_injective
Int.instCharZero
Multipliable.of_nat_of_neg_add_one
IsTopologicalGroup.toContinuousMul
IsUniformGroup.to_topologicalGroup
multipliable_nat_add_iff πŸ“–mathematicalβ€”Multipliable
CommGroup.toCommMonoid
SummationFilter.unconditional
β€”Function.Surjective.multipliable_iff_of_hasProd_iff
Equiv.surjective
hasProd_nat_add_iff
multipliable_pnat_iff_multipliable_nat πŸ“–mathematicalβ€”Multipliable
PNat
CommGroup.toCommMonoid
PNat.val
SummationFilter.unconditional
β€”multipliable_pnat_iff_multipliable_succ
multipliable_nat_add_iff
multipliable_pnat_iff_multipliable_succ πŸ“–mathematicalβ€”Multipliable
PNat
PNat.val
SummationFilter.unconditional
β€”Equiv.multipliable_iff
pnat_multipliable_iff_multipliable_succ πŸ“–mathematicalβ€”Multipliable
PNat
PNat.val
SummationFilter.unconditional
β€”multipliable_pnat_iff_multipliable_succ
rel_iSup_prod πŸ“–mathematicalBot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
tprod
SummationFilter.unconditional
Finset
Finset.instMembership
Finset.prod
β€”iSup_subtype'
Finset.tprod_subtype
rel_iSup_tprod
Finite.to_countable
Finite.of_fintype
rel_iSup_sum πŸ“–mathematicalBot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
tsum
SummationFilter.unconditional
Finset
Finset.instMembership
Finset.sum
β€”iSup_subtype'
Finset.tsum_subtype
rel_iSup_tsum
Finite.to_countable
Finite.of_fintype
rel_iSup_tprod πŸ“–β€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
tprod
SummationFilter.unconditional
β€”β€”nonempty_encodable
Encodable.iSup_decodeβ‚‚
tprod_iSup_decodeβ‚‚
rel_iSup_tsum πŸ“–β€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
tsum
SummationFilter.unconditional
β€”β€”nonempty_encodable
Encodable.iSup_decodeβ‚‚
tsum_iSup_decodeβ‚‚
rel_sup_add πŸ“–mathematicalBot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
tsum
SummationFilter.unconditional
SemilatticeSup.toMax
ConditionallyCompleteLattice.toLattice
AddZero.toAdd
β€”iSup_bool_eq
tsum_fintype
SummationFilter.instLeAtTopUnconditional
Fintype.sum_bool
rel_iSup_tsum
Bool.countable
rel_sup_mul πŸ“–mathematicalBot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
tprod
SummationFilter.unconditional
SemilatticeSup.toMax
ConditionallyCompleteLattice.toLattice
MulOne.toMul
β€”iSup_bool_eq
tprod_fintype
SummationFilter.instLeAtTopUnconditional
Fintype.prod_bool
rel_iSup_tprod
Bool.countable
summable_iff_nat_tsum_vanishing πŸ“–mathematicalβ€”Summable
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
Set
Set.instMembership
tsum
Set.Elem
β€”summable_iff_cauchySeq_finset
cauchySeq_finset_iff_nat_tsum_vanishing
summable_int_iff_summable_nat_and_neg πŸ“–mathematicalβ€”Summable
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
β€”Summable.comp_injective
Nat.cast_injective
Int.instCharZero
neg_injective
Summable.of_nat_of_neg
IsUniformAddGroup.to_topologicalAddGroup
summable_int_iff_summable_nat_and_neg_add_zero πŸ“–mathematicalβ€”Summable
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
β€”Summable.comp_injective
Nat.cast_injective
Int.instCharZero
Summable.of_nat_of_neg_add_one
IsTopologicalAddGroup.toContinuousAdd
IsUniformAddGroup.to_topologicalAddGroup
summable_nat_add_iff πŸ“–mathematicalβ€”Summable
AddCommGroup.toAddCommMonoid
SummationFilter.unconditional
β€”Function.Surjective.summable_iff_of_hasSum_iff
Equiv.surjective
hasSum_nat_add_iff
summable_pnat_iff_summable_nat πŸ“–mathematicalβ€”Summable
PNat
AddCommGroup.toAddCommMonoid
PNat.val
SummationFilter.unconditional
β€”summable_pnat_iff_summable_succ
summable_nat_add_iff
summable_pnat_iff_summable_succ πŸ“–mathematicalβ€”Summable
PNat
PNat.val
SummationFilter.unconditional
β€”Equiv.summable_iff
tendsto_prod_nat_add πŸ“–mathematicalβ€”Filter.Tendsto
tprod
CommGroup.toCommMonoid
SummationFilter.unconditional
Filter.atTop
Nat.instPreorder
nhds
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
β€”div_eq_iff_eq_mul
mul_comm
Multipliable.prod_mul_tprod_nat_add
tendsto_const_nhds
div_self'
Filter.Tendsto.div'
IsTopologicalGroup.to_continuousDiv
HasProd.tendsto_prod_nat
Multipliable.hasProd
Filter.Tendsto.congr
tprod_eq_one_of_not_multipliable
multipliable_nat_add_iff
tendsto_sum_nat_add πŸ“–mathematicalβ€”Filter.Tendsto
tsum
AddCommGroup.toAddCommMonoid
SummationFilter.unconditional
Filter.atTop
Nat.instPreorder
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”sub_eq_iff_eq_add
add_comm
Summable.sum_add_tsum_nat_add
tendsto_const_nhds
sub_self
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
HasSum.tendsto_sum_nat
Summable.hasSum
Filter.Tendsto.congr
tsum_eq_zero_of_not_summable
summable_nat_add_iff
tprod_eq_zero_mul' πŸ“–mathematicalMultipliable
SummationFilter.unconditional
tprod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”Finset.prod_range_one
Multipliable.prod_mul_tprod_nat_mul'
tprod_even_mul_odd πŸ“–mathematicalMultipliable
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
tprod
β€”HasProd.tprod_eq
SummationFilter.instNeBotUnconditional
HasProd.even_mul_odd
Multipliable.hasProd
tprod_iSup_decodeβ‚‚ πŸ“–mathematicalBot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
tprod
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Encodable.decodeβ‚‚
SummationFilter.unconditional
β€”tprod_extend_one
Encodable.encode_injective
tprod_congr
em
iSup_congr_Prop
Encodable.decodeβ‚‚_encode
iSup_iSup_eq_right
Function.Injective.extend_apply
Function.extend_apply'
Encodable.decodeβ‚‚_ne_none_iff
iSup_neg
iSup_bot
tprod_iUnion_decodeβ‚‚ πŸ“–mathematicalSet
Set.instEmptyCollection
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
tprod
Set.iUnion
Encodable.decodeβ‚‚
SummationFilter.unconditional
β€”tprod_iSup_decodeβ‚‚
tprod_int_eq_zero_mul_tprod_pnat πŸ“–mathematicalMultipliable
CommGroup.toCommMonoid
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
tprod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
PNat
PNat.val
β€”multipliable_int_iff_multipliable_nat_and_neg
multipliable_pnat_iff_multipliable_succ
multipliable_nat_add_iff
IsUniformGroup.to_topologicalGroup
tprod_nat_mul_neg
IsTopologicalGroup.toContinuousMul
tprod_zero_pnat_eq_tprod_nat
Multipliable.mul
Nat.cast_zero
neg_zero
mul_comm
mul_assoc
LeftCancelSemigroup.toIsLeftCancelMul
Multipliable.tprod_mul
SummationFilter.instNeBotUnconditional
tprod_int_eq_zero_mul_tprod_pnat_sq πŸ“–mathematicalFunction.Even
Multipliable
CommGroup.toCommMonoid
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
tprod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Monoid.toNatPow
PNat
PNat.val
β€”sq
tprod_int_eq_zero_mul_tprod_pnat
tprod_int_rec πŸ“–mathematicalMultipliable
SummationFilter.unconditional
tprod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”HasProd.tprod_eq
SummationFilter.instNeBotUnconditional
Multipliable.hasProd
tprod_nat_mul_neg πŸ“–mathematicalMultipliable
SummationFilter.unconditional
tprod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”HasProd.tprod_eq
SummationFilter.instNeBotUnconditional
HasProd.nat_mul_neg
Multipliable.hasProd
tprod_nat_mul_neg_add_one πŸ“–mathematicalMultipliable
SummationFilter.unconditional
tprod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”HasProd.tprod_eq
SummationFilter.instNeBotUnconditional
HasProd.nat_mul_neg_add_one
Multipliable.hasProd
tprod_of_add_one_of_neg_add_one πŸ“–mathematicalMultipliable
SummationFilter.unconditional
tprod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”HasProd.tprod_eq
SummationFilter.instNeBotUnconditional
HasProd.of_add_one_of_neg_add_one
Multipliable.hasProd
tprod_of_nat_of_neg_add_one πŸ“–mathematicalMultipliable
SummationFilter.unconditional
tprod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”HasProd.tprod_eq
SummationFilter.instNeBotUnconditional
HasProd.of_nat_of_neg_add_one
Multipliable.hasProd
tprod_pnat_eq_tprod_succ πŸ“–mathematicalβ€”tprod
PNat
PNat.val
SummationFilter.unconditional
β€”Equiv.tprod_eq
tprod_zero_pnat_eq_tprod_nat πŸ“–mathematicalMultipliable
CommGroup.toCommMonoid
SummationFilter.unconditional
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
tprod
PNat
PNat.val
β€”Multipliable.tprod_eq_zero_mul
LeftCancelSemigroup.toIsLeftCancelMul
tprod_pnat_eq_tprod_succ
tsum_eq_zero_add' πŸ“–mathematicalSummable
SummationFilter.unconditional
tsum
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Finset.sum_range_one
Summable.sum_add_tsum_nat_add'
tsum_even_add_odd πŸ“–mathematicalSummable
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
tsum
β€”HasSum.tsum_eq
SummationFilter.instNeBotUnconditional
HasSum.even_add_odd
Summable.hasSum
tsum_iSup_decodeβ‚‚ πŸ“–mathematicalBot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
tsum
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Encodable.decodeβ‚‚
SummationFilter.unconditional
β€”tsum_extend_zero
Encodable.encode_injective
tsum_congr
em
iSup_congr_Prop
Encodable.decodeβ‚‚_encode
iSup_iSup_eq_right
Function.Injective.extend_apply
Function.extend_apply'
Encodable.decodeβ‚‚_ne_none_iff
iSup_neg
iSup_bot
tsum_iUnion_decodeβ‚‚ πŸ“–mathematicalSet
Set.instEmptyCollection
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
tsum
Set.iUnion
Encodable.decodeβ‚‚
SummationFilter.unconditional
β€”tsum_iSup_decodeβ‚‚
tsum_int_eq_zero_add_tsum_pnat πŸ“–mathematicalSummable
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
tsum
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PNat
PNat.val
β€”summable_int_iff_summable_nat_and_neg
summable_pnat_iff_summable_succ
summable_nat_add_iff
IsUniformAddGroup.to_topologicalAddGroup
tsum_nat_add_neg
IsTopologicalAddGroup.toContinuousAdd
tsum_zero_pnat_eq_tsum_nat
Summable.add
Nat.cast_zero
neg_zero
add_comm
add_assoc
AddLeftCancelSemigroup.toIsLeftCancelAdd
Summable.tsum_add
SummationFilter.instNeBotUnconditional
tsum_int_eq_zero_add_two_mul_tsum_pnat πŸ“–mathematicalFunction.Even
Summable
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
tsum
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoid.toNatSMul
PNat
PNat.val
β€”two_nsmul
add_assoc
tsum_int_eq_zero_add_tsum_pnat
tsum_int_rec πŸ“–mathematicalSummable
SummationFilter.unconditional
tsum
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”HasSum.tsum_eq
SummationFilter.instNeBotUnconditional
Summable.hasSum
tsum_nat_add_neg πŸ“–mathematicalSummable
SummationFilter.unconditional
tsum
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”HasSum.tsum_eq
SummationFilter.instNeBotUnconditional
HasSum.nat_add_neg
Summable.hasSum
tsum_nat_add_neg_add_one πŸ“–mathematicalSummable
SummationFilter.unconditional
tsum
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”HasSum.tsum_eq
SummationFilter.instNeBotUnconditional
HasSum.nat_add_neg_add_one
Summable.hasSum
tsum_of_add_one_of_neg_add_one πŸ“–mathematicalSummable
SummationFilter.unconditional
tsum
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”HasSum.tsum_eq
SummationFilter.instNeBotUnconditional
HasSum.of_add_one_of_neg_add_one
Summable.hasSum
tsum_of_nat_of_neg_add_one πŸ“–mathematicalSummable
SummationFilter.unconditional
tsum
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”HasSum.tsum_eq
SummationFilter.instNeBotUnconditional
HasSum.of_nat_of_neg_add_one
Summable.hasSum
tsum_pnat_eq_tsum_succ πŸ“–mathematicalβ€”tsum
PNat
PNat.val
SummationFilter.unconditional
β€”Equiv.tsum_eq
tsum_zero_pnat_eq_tsum_nat πŸ“–mathematicalSummable
AddCommGroup.toAddCommMonoid
SummationFilter.unconditional
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
tsum
PNat
PNat.val
β€”Summable.tsum_eq_zero_add
AddLeftCancelSemigroup.toIsLeftCancelAdd
tsum_pnat_eq_tsum_succ

---

← Back to Index