Documentation Verification Report

Ring

πŸ“ Source: Mathlib/Topology/Algebra/InfiniteSum/Ring.lean

Statistics

MetricCount
Definitions0
Theoremstsum_left, tsum_right, const_div, div_const, mul, mul_eq, mul_left, mul_right, const_div, div_const, mul_left, mul_right, one_sub_mul_tsum_pow, tsum_mul_left, tsum_mul_right, tsum_mul_tsum, tsum_mul_tsum_eq_tsum_sum_antidiagonal, tsum_mul_tsum_eq_tsum_sum_range, tsum_pow_mul_one_sub, hasProd_one_add_of_hasSum_prod, hasSum_const_div_iff, hasSum_div_const_iff, hasSum_mul_left_iff, hasSum_mul_right_iff, multipliable_one_add_of_summable_prod, summable_const_div_iff, summable_div_const_iff, summable_mul_left_iff, summable_mul_prod_iff_summable_mul_sigma_antidiagonal, summable_mul_right_iff, summable_sum_mul_antidiagonal_of_summable_mul, summable_sum_mul_range_of_summable_mul, tprod_one_add, tprod_one_add_ordered, tprod_one_sub_ordered, tsum_div_const, tsum_mul_left, tsum_mul_right
38
Total38

Commute

Theorems

NameKindAssumesProvesValidatesDepends On
tsum_left πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
tsum
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”symm
tsum_right
tsum_right πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
tsum
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”Summable.tsum_mul_left
tsum_congr
Summable.tsum_mul_right
zero_right
tsum_eq_zero_of_not_summable

HasSum

Theorems

NameKindAssumesProvesValidatesDepends On
const_div πŸ“–mathematicalHasSum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_left
div_eq_mul_inv
one_mul
div_const πŸ“–mathematicalHasSum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”div_eq_mul_inv
mul_right
mul πŸ“–β€”HasSum
NonUnitalNonAssocSemiring.toAddCommMonoid
SummationFilter.unconditional
Summable
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”mul_eq
mul_eq πŸ“–β€”HasSum
NonUnitalNonAssocSemiring.toAddCommMonoid
SummationFilter.unconditional
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”mul_right
mul_left
prod_fiberwise
IsTopologicalSemiring.toContinuousAdd
T3Space.toRegularSpace
unique
T25Space.t2Space
T3Space.t25Space
SummationFilter.instNeBotUnconditional
mul_left πŸ“–mathematicalHasSum
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”map
AddMonoidHom.instAddMonoidHomClass
Continuous.mul
IsTopologicalSemiring.toContinuousMul
continuous_const
continuous_id
mul_right πŸ“–mathematicalHasSum
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”map
AddMonoidHom.instAddMonoidHomClass
Continuous.mul
IsTopologicalSemiring.toContinuousMul
continuous_id
continuous_const

Summable

Theorems

NameKindAssumesProvesValidatesDepends On
const_div πŸ“–β€”Summable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”HasSum.summable
HasSum.const_div
hasSum
div_const πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”HasSum.summable
HasSum.div_const
hasSum
mul_left πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”HasSum.summable
HasSum.mul_left
hasSum
mul_right πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”HasSum.summable
HasSum.mul_right
hasSum
one_sub_mul_tsum_pow πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SummationFilter.unconditional
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
tsum
β€”tendsto_nhds_unique
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
HasSum.tendsto_sum_nat
HasSum.mul_left
IsTopologicalRing.toIsTopologicalSemiring
hasSum
mul_neg_geom_sum
sub_zero
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
IsTopologicalRing.to_topologicalAddGroup
tendsto_const_nhds
tendsto_atTop_zero
tsum_mul_left πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
tsum
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”HasSum.tsum_eq
HasSum.mul_left
hasSum
tsum_mul_right πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
tsum
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”HasSum.tsum_eq
HasSum.mul_right
hasSum
tsum_mul_tsum πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
SummationFilter.unconditional
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
tsumβ€”HasSum.mul_eq
hasSum
tsum_mul_tsum_eq_tsum_sum_antidiagonal πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
SummationFilter.unconditional
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
tsum
Finset.sum
Finset.HasAntidiagonal.antidiagonal
AddCommMonoid.toAddMonoid
β€”Finset.sum_finset_coe
tsum_fintype
SummationFilter.instLeAtTopUnconditional
tsum_mul_tsum
Equiv.tsum_eq
tsum_sigma'
IsTopologicalSemiring.toContinuousAdd
HasSum.summable
hasSum_fintype
summable_mul_prod_iff_summable_mul_sigma_antidiagonal
tsum_mul_tsum_eq_tsum_sum_range πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
SummationFilter.unconditional
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
tsum
Finset.sum
Finset.range
β€”Finset.Nat.sum_antidiagonal_eq_sum_range_succ
tsum_mul_tsum_eq_tsum_sum_antidiagonal
tsum_pow_mul_one_sub πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SummationFilter.unconditional
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
tsum
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”tendsto_nhds_unique
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
HasSum.tendsto_sum_nat
HasSum.mul_right
IsTopologicalRing.toIsTopologicalSemiring
hasSum
geom_sum_mul_neg
sub_zero
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
IsTopologicalRing.to_topologicalAddGroup
tendsto_const_nhds
tendsto_atTop_zero

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
hasProd_one_add_of_hasSum_prod πŸ“–mathematicalHasSum
Finset
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finset.prod
CommSemiring.toCommMonoid
SummationFilter.unconditional
HasProd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Finset.prod_congr
Finset.prod_one_add
Filter.Tendsto.comp
Filter.tendsto_finset_powerset_atTop_atTop
hasSum_const_div_iff πŸ“–mathematicalβ€”HasSum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Pi.instDiv
Pi.instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”div_eq_mul_inv
one_mul
hasSum_mul_left_iff
hasSum_div_const_iff πŸ“–mathematicalβ€”HasSum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”div_eq_mul_inv
hasSum_mul_right_iff
inv_ne_zero
hasSum_mul_left_iff πŸ“–mathematicalβ€”HasSum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”inv_mul_cancel_leftβ‚€
HasSum.mul_left
hasSum_mul_right_iff πŸ“–mathematicalβ€”HasSum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_inv_cancel_rightβ‚€
HasSum.mul_right
multipliable_one_add_of_summable_prod πŸ“–mathematicalSummable
Finset
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finset.prod
CommSemiring.toCommMonoid
SummationFilter.unconditional
Multipliable
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”hasProd_one_add_of_hasSum_prod
summable_const_div_iff πŸ“–mathematicalβ€”Summable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Pi.instDiv
Pi.instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”div_eq_mul_inv
one_mul
summable_mul_left_iff
summable_div_const_iff πŸ“–mathematicalβ€”Summable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”div_eq_mul_inv
summable_mul_right_iff
inv_ne_zero
summable_mul_left_iff πŸ“–mathematicalβ€”Summable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”inv_mul_cancel_leftβ‚€
Summable.mul_left
summable_mul_prod_iff_summable_mul_sigma_antidiagonal πŸ“–mathematicalβ€”Summable
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SummationFilter.unconditional
Finset
SetLike.instMembership
Finset.instSetLike
Finset.HasAntidiagonal.antidiagonal
AddCommMonoid.toAddMonoid
β€”Equiv.summable_iff
summable_mul_right_iff πŸ“–mathematicalβ€”Summable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_inv_cancel_rightβ‚€
Summable.mul_right
summable_sum_mul_antidiagonal_of_summable_mul πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SummationFilter.unconditional
Finset.sum
Finset.HasAntidiagonal.antidiagonal
AddCommMonoid.toAddMonoid
β€”Finset.sum_finset_coe
tsum_fintype
SummationFilter.instLeAtTopUnconditional
Summable.sigma'
IsTopologicalSemiring.toContinuousAdd
T3Space.toRegularSpace
summable_mul_prod_iff_summable_mul_sigma_antidiagonal
HasSum.summable
hasSum_fintype
summable_sum_mul_range_of_summable_mul πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SummationFilter.unconditional
Finset.sum
Finset.range
β€”Finset.Nat.sum_antidiagonal_eq_sum_range_succ
summable_sum_mul_antidiagonal_of_summable_mul
tprod_one_add πŸ“–mathematicalSummable
Finset
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finset.prod
CommSemiring.toCommMonoid
SummationFilter.unconditional
tprod
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
tsum
β€”HasProd.tprod_eq
SummationFilter.instNeBotUnconditional
hasProd_one_add_of_hasSum_prod
Summable.hasSum
tprod_one_add_ordered πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Finset.prod
CommSemiring.toCommMonoid
Finset.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Distrib.toAdd
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SummationFilter.unconditional
Multipliable
tprod
tsum
β€”isEmpty_or_nonempty
tprod_empty
tsum_empty
add_zero
HasSum.tsum_eq
SummationFilter.instNeBotUnconditional
tendsto_nhds_unique
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Filter.Tendsto.comp
Finset.prod_one_add_ordered
Filter.tendsto_finset_Iic_atTop_atTop
Filter.Tendsto.const_add
Finset.sum_congr
HasProd.tprod_eq
tprod_one_sub_ordered πŸ“–mathematicalSummable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Finset.prod
CommRing.toCommMonoid
Finset.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
SummationFilter.unconditional
Multipliable
tprod
tsum
β€”sub_eq_add_neg
Finset.prod_congr
tprod_one_add_ordered
IsTopologicalAddGroup.toContinuousAdd
Summable.neg
tsum_div_const πŸ“–mathematicalβ€”tsum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”div_eq_mul_inv
tsum_mul_right
tsum_mul_left πŸ“–mathematicalβ€”tsum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”MulZeroClass.zero_mul
tsum_zero
Topology.IsClosedEmbedding.map_tsum
AddMonoidHom.instAddMonoidHomClass
Homeomorph.isClosedEmbedding
IsTopologicalSemiring.toContinuousMul
tsum_mul_right πŸ“–mathematicalβ€”tsum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”MulZeroClass.mul_zero
tsum_zero
Topology.IsClosedEmbedding.map_tsum
AddMonoidHom.instAddMonoidHomClass
Homeomorph.isClosedEmbedding
IsTopologicalSemiring.toContinuousMul

---

← Back to Index