Documentation Verification Report

IsOpenUnits

📁 Source: Mathlib/Topology/Algebra/IsOpenUnits.lean

Statistics

MetricCount
DefinitionsIsOpenUnits
1
TheoremsisOpenEmbedding_unitsVal, of_isAdic, instIsOpenUnitsOfContinuousInv, instIsOpenUnitsOfContinuousInv₀OfT1Space, instIsOpenUnitsOfDiscreteTopology, isOpenUnits_iff
6
Total7

IsOpenUnits

Theorems

NameKindAssumesProvesValidatesDepends On
isOpenEmbedding_unitsVal 📖mathematical—Topology.IsOpenEmbedding
Units
Units.instTopologicalSpaceUnits
Units.val
——
of_isAdic 📖mathematicalIsAdic
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.jacobson
CommRing.toRing
Bot.bot
Ring.toSemiring
Submodule.instBot
IsOpenUnits
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
—Topology.IsOpenEmbedding.of_continuous_injective_isOpenMap
Units.continuous_val
Units.val_injective
IsTopologicalGroup.isOpenMap_iff_nhds_one
Units.instIsTopologicalGroupOfContinuousMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
MonoidHom.instMonoidHomClass
nhds_induced
nhds_prod_eq
inv_one
IsScalarTower.right
Ideal.hasBasis_nhds_adic
Filter.HasBasis.prod
Filter.HasBasis.comap
Set.image_congr
Filter.HasBasis.mem_iff'
Filter.HasBasis.map
Homeomorph.comap_nhds_eq
Set.image_add_left
Ideal.pow_le_pow_right
Ideal.mem_jacobson_bot
Ideal.pow_le_self
add_comm
mul_one
neg_add_cancel_left
mul_add
Distrib.leftDistribClass
mul_neg
IsUnit.val_inv_mul
neg_add_rev
neg_add_cancel_right
neg_mul
Ideal.mul_mem_left

(root)

Definitions

NameCategoryTheorems
IsOpenUnits 📖CompData
5 mathmath: instIsOpenUnitsOfContinuousInv₀OfT1Space, instIsOpenUnitsOfContinuousInv, isOpenUnits_iff, instIsOpenUnitsOfDiscreteTopology, IsOpenUnits.of_isAdic

Theorems

NameKindAssumesProvesValidatesDepends On
instIsOpenUnitsOfContinuousInv 📖mathematical—IsOpenUnits
DivInvMonoid.toMonoid
Group.toDivInvMonoid
—Homeomorph.isOpenEmbedding
instIsOpenUnitsOfContinuousInv₀OfT1Space 📖mathematical—IsOpenUnits
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
—Units.isEmbedding_val₀
Set.ext
isUnit_iff_ne_zero
IsClosed.isOpen_compl
isClosed_singleton
instIsOpenUnitsOfDiscreteTopology 📖mathematical—IsOpenUnits—Topology.IsOpenEmbedding.of_continuous_injective_isOpenMap
Units.continuous_val
Units.val_injective
isOpen_discrete
isOpenUnits_iff 📖mathematical—IsOpenUnits
Topology.IsOpenEmbedding
Units
Units.instTopologicalSpaceUnits
Units.val
——

---

← Back to Index