Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Algebra/IsUniformGroup/Basic.lean

Statistics

MetricCount
DefinitionsopUniformEquivLeft, opUniformEquivRight, opUniformEquivLeft, opUniformEquivRight, inv, neg
6
Theoremstendsto_coe_cofinite_of_discrete, comap_op_leftUniformSpace, comap_op_rightUniformSpace, isClosed_of_discrete, isUniformAddGroup, tendsto_coe_cofinite_of_discrete, add, add_const, const_add, const_mul, inv, mul, mul_const, neg, extend_Z_bilin, completeSpace_of_weaklyLocallyCompactSpace, completeSpace_of_weaklyLocallyCompactSpace, completeSpace_rightUniformSpace_iff_leftUniformSpace, tendstoLocallyUniformlyOn_iff, tendstoLocallyUniformly_iff, tendstoUniformlyOn_iff, tendstoUniformly_iff, completeSpace_rightUniformSpace_iff_leftUniformSpace, tendstoLocallyUniformlyOn_iff, tendstoLocallyUniformly_iff, tendstoUniformlyOn_iff, tendstoUniformly_iff, cauchy_iff_tendsto, cauchy_iff_tendsto_swapped, cauchy_map_iff_tendsto, cauchy_map_iff_tendsto_swapped, of_compactSpace, cauchy_iff_tendsto, cauchy_iff_tendsto_swapped, cauchy_map_iff_tendsto, cauchy_map_iff_tendsto_swapped, of_compactSpace, tendsto_coe_cofinite_of_discrete, comap_op_leftUniformSpace, comap_op_rightUniformSpace, completeSpace_left, completeSpace_left', completeSpace_right, completeSpace_right', completeSpace_left, completeSpace_left', completeSpace_right, completeSpace_right', isClosed_of_discrete, isUniformGroup, tendsto_coe_cofinite_of_discrete, add, div, fun_add, fun_div, fun_inv, fun_mul, fun_neg, fun_sub, inv, mul, neg, sub, add, div, fun_add, fun_div, fun_inv, fun_mul, fun_neg, fun_sub, inv, mul, neg, sub, add, div, fun_add, fun_div, fun_inv, fun_mul, fun_neg, fun_sub, inv, mul, neg, sub, add, div, fun_add, fun_div, fun_inv, fun_mul, fun_neg, fun_sub, inv, mul, neg, sub, add, div, fun_add, fun_div, fun_inv, fun_mul, fun_neg, fun_sub, inv, mul, neg, sub, add, div, fun_add, fun_div, fun_inv, fun_mul, fun_neg, fun_sub, inv, mul, neg, sub, comap_inv_leftUniformSpace, comap_neg_leftUniformSpace, isUniformEmbedding_translate_add, isUniformEmbedding_translate_mul, tendsto_div_comap_self, tendsto_sub_comap_self, topologicalAddGroup_is_uniform_of_compactSpace, topologicalGroup_is_uniform_of_compactSpace, totallyBounded_iff_subset_finite_iUnion_nhds_one, totallyBounded_iff_subset_finite_iUnion_nhds_zero, totallyBounded_inv, totallyBounded_neg
135
Total141

AddMonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_coe_cofinite_of_discrete πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instFunLike
IsDiscrete
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
range
Filter.Tendsto
Filter.cofinite
Filter.cocompact
β€”rangeRestrict_injective_iff
Filter.Tendsto.comp
AddSubgroup.tendsto_coe_cofinite_of_discrete
Function.Injective.tendsto_cofinite

AddOpposite

Definitions

NameCategoryTheorems
opUniformEquivLeft πŸ“–CompOpβ€”
opUniformEquivRight πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comap_op_leftUniformSpace πŸ“–mathematicalβ€”UniformSpace.comap
AddOpposite
op
IsTopologicalAddGroup.leftUniformSpace
instAddGroup
instTopologicalSpaceAddOpposite
instIsTopologicalAddGroupAddOpposite
IsTopologicalAddGroup.rightUniformSpace
β€”UniformSpace.ext
instIsTopologicalAddGroupAddOpposite
Homeomorph.comap_nhds_eq
Filter.comap_comap
sub_eq_add_neg
comap_op_rightUniformSpace πŸ“–mathematicalβ€”UniformSpace.comap
AddOpposite
op
IsTopologicalAddGroup.rightUniformSpace
instAddGroup
instTopologicalSpaceAddOpposite
instIsTopologicalAddGroupAddOpposite
IsTopologicalAddGroup.leftUniformSpace
β€”UniformSpace.ext
instIsTopologicalAddGroupAddOpposite
Homeomorph.comap_nhds_eq
Filter.comap_comap

AddSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed_of_discrete πŸ“–mathematicalβ€”IsClosed
SetLike.coe
AddSubgroup
instSetLike
β€”isDiscrete_iff_discreteTopology
nhds_inter_eq_singleton_of_mem_discrete
zero_mem
Filter.preimage_mem_comap
isClosed_of_spaced_out
T1Space.t0Space
T2Space.t1Space
Mathlib.Tactic.Contrapose.contraposeβ‚„
Set.mem_preimage
Set.mem_inter
sub_mem
eq_of_sub_eq_zero
isUniformAddGroup πŸ“–mathematicalβ€”IsUniformAddGroup
AddSubgroup
SetLike.instMembership
instSetLike
instUniformSpaceSubtype
toAddGroup
β€”IsUniformAddGroup.comap
AddMonoidHom.instAddMonoidHomClass
tendsto_coe_cofinite_of_discrete πŸ“–mathematicalIsDiscrete
SetLike.coe
AddSubgroup
instSetLike
Filter.Tendsto
SetLike.instMembership
Filter.cofinite
Filter.cocompact
β€”IsClosed.tendsto_coe_cofinite_of_isDiscrete
isClosed_of_discrete
isDiscrete_iff_discreteTopology

CauchySeq

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalCauchySeqPi.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”UniformContinuous.comp_cauchySeq
uniformContinuous_add
prodMk
add_const πŸ“–mathematicalCauchySeqAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”UniformContinuous.comp_cauchySeq
UniformContinuous.add
uniformContinuous_id
uniformContinuous_const
const_add πŸ“–mathematicalCauchySeqAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”UniformContinuous.comp_cauchySeq
UniformContinuous.add
uniformContinuous_const
uniformContinuous_id
const_mul πŸ“–mathematicalCauchySeqMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”UniformContinuous.comp_cauchySeq
UniformContinuous.mul
uniformContinuous_const
uniformContinuous_id
inv πŸ“–mathematicalCauchySeqPi.instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”UniformContinuous.comp_cauchySeq
uniformContinuous_inv
mul πŸ“–mathematicalCauchySeqPi.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”UniformContinuous.comp_cauchySeq
uniformContinuous_mul
prodMk
mul_const πŸ“–mathematicalCauchySeqMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”UniformContinuous.comp_cauchySeq
UniformContinuous.mul
uniformContinuous_id
uniformContinuous_const
neg πŸ“–mathematicalCauchySeqPi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”UniformContinuous.comp_cauchySeq
uniformContinuous_neg

IsDenseInducing

Theorems

NameKindAssumesProvesValidatesDepends On
extend_Z_bilin πŸ“–mathematicalIsDenseInducing
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom.instFunLike
Continuous
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
AddMonoidHom.instAddCommGroup
extend
prodMap
β€”continuous_extend_of_cauchy
prodMap
Filter.NeBot.map
Filter.comap_neBot
mem_closure_iff_nhds
dense
Filter.mem_comap
Filter.mem_map
nhds_prod_eq
Filter.mem_prod_same_iff
Filter.prod_mem_prod
uniformity_eq_comap_nhds_zero
IsUniformAddGroup.isRightUniformAddGroup
Filter.prod_map_map_eq
Filter.map_le_iff_le_comap
Filter.map_map
Filter.prod_comap_comap_eq

IsRightUniformAddGroup

Theorems

NameKindAssumesProvesValidatesDepends On
completeSpace_of_weaklyLocallyCompactSpace πŸ“–mathematicalβ€”CompleteSpaceβ€”WeaklyLocallyCompactSpace.exists_compact_mem_nhds
Filter.Eventually.exists
Filter.Eventually.curry
Filter.Tendsto.eventually_mem
Filter.tendsto_iff_comap
uniformity_eq_comap_nhds_zero
cauchy_iff_le
IsCompact.isComplete
IsCompact.vadd
VAddCommClass.continuousConstVAdd
AddSemigroup.opposite_vaddCommClass
IsTopologicalAddGroup.toContinuousAdd
toIsTopologicalAddGroup
Filter.le_principal_iff
Filter.eventually_mem_set
Set.mem_vadd_set_iff_neg_vadd_mem
sub_eq_add_neg

IsRightUniformGroup

Theorems

NameKindAssumesProvesValidatesDepends On
completeSpace_of_weaklyLocallyCompactSpace πŸ“–mathematicalβ€”CompleteSpaceβ€”WeaklyLocallyCompactSpace.exists_compact_mem_nhds
Filter.Eventually.exists
Filter.Eventually.curry
Filter.Tendsto.eventually_mem
Filter.tendsto_iff_comap
uniformity_eq_comap_nhds_one
cauchy_iff_le
IsCompact.isComplete
IsCompact.smul
SMulCommClass.continuousConstSMul
Semigroup.opposite_smulCommClass
IsTopologicalGroup.toContinuousMul
toIsTopologicalGroup
div_eq_mul_inv

IsTopologicalAddGroup

Theorems

NameKindAssumesProvesValidatesDepends On
completeSpace_rightUniformSpace_iff_leftUniformSpace πŸ“–mathematicalβ€”CompleteSpace
rightUniformSpace
leftUniformSpace
β€”UniformEquiv.completeSpace_iff
tendstoLocallyUniformlyOn_iff πŸ“–mathematicalrightUniformSpace
UniformSpace.toTopologicalSpace
TendstoLocallyUniformlyOn
Set
Filter
Filter.instMembership
nhdsWithin
Filter.Eventually
β€”Filter.mem_of_superset
tendstoLocallyUniformly_iff πŸ“–mathematicalrightUniformSpace
UniformSpace.toTopologicalSpace
TendstoLocallyUniformly
Set
Filter
Filter.instMembership
nhds
Filter.Eventually
β€”Filter.mem_of_superset
tendstoUniformlyOn_iff πŸ“–mathematicalrightUniformSpace
UniformSpace.toTopologicalSpace
TendstoUniformlyOn
Filter.Eventually
β€”Filter.mem_of_superset
tendstoUniformly_iff πŸ“–mathematicalrightUniformSpace
UniformSpace.toTopologicalSpace
TendstoUniformly
Filter.Eventually
β€”Filter.mem_of_superset

IsTopologicalGroup

Theorems

NameKindAssumesProvesValidatesDepends On
completeSpace_rightUniformSpace_iff_leftUniformSpace πŸ“–mathematicalβ€”CompleteSpace
rightUniformSpace
leftUniformSpace
β€”UniformEquiv.completeSpace_iff
tendstoLocallyUniformlyOn_iff πŸ“–mathematicalrightUniformSpace
UniformSpace.toTopologicalSpace
TendstoLocallyUniformlyOn
Set
Filter
Filter.instMembership
nhdsWithin
Filter.Eventually
β€”Filter.mem_of_superset
tendstoLocallyUniformly_iff πŸ“–mathematicalrightUniformSpace
UniformSpace.toTopologicalSpace
TendstoLocallyUniformly
Set
Filter
Filter.instMembership
nhds
Filter.Eventually
β€”Filter.mem_of_superset
tendstoUniformlyOn_iff πŸ“–mathematicalrightUniformSpace
UniformSpace.toTopologicalSpace
TendstoUniformlyOn
Filter.Eventually
β€”Filter.mem_of_superset
tendstoUniformly_iff πŸ“–mathematicalrightUniformSpace
UniformSpace.toTopologicalSpace
TendstoUniformly
Filter.Eventually
β€”Filter.mem_of_superset

IsUniformAddGroup

Theorems

NameKindAssumesProvesValidatesDepends On
cauchy_iff_tendsto πŸ“–mathematicalβ€”Cauchy
Filter.NeBot
Filter.Tendsto
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SProd.sprod
Filter
Filter.instSProd
nhds
UniformSpace.toTopologicalSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”uniformity_eq_comap_nhds_zero_swapped
isRightUniformAddGroup
Filter.tendsto_iff_comap
cauchy_iff_tendsto_swapped πŸ“–mathematicalβ€”Cauchy
Filter.NeBot
Filter.Tendsto
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SProd.sprod
Filter
Filter.instSProd
nhds
UniformSpace.toTopologicalSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”uniformity_eq_comap_nhds_zero
isRightUniformAddGroup
Filter.tendsto_iff_comap
cauchy_map_iff_tendsto πŸ“–mathematicalβ€”Cauchy
Filter.map
Filter.NeBot
Filter.Tendsto
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SProd.sprod
Filter
Filter.instSProd
nhds
UniformSpace.toTopologicalSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”cauchy_map_iff
uniformity_eq_comap_nhds_zero_swapped
isRightUniformAddGroup
Filter.tendsto_comap_iff
cauchy_map_iff_tendsto_swapped πŸ“–mathematicalβ€”Cauchy
Filter.map
Filter.NeBot
Filter.Tendsto
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SProd.sprod
Filter
Filter.instSProd
nhds
UniformSpace.toTopologicalSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”cauchy_map_iff
uniformity_eq_comap_nhds_zero
isRightUniformAddGroup
Filter.tendsto_comap_iff
of_compactSpace πŸ“–mathematicalβ€”IsUniformAddGroupβ€”CompactSpace.uniformContinuous_of_continuous
instCompactSpaceProd
ContinuousSub.continuous_sub

IsUniformGroup

Theorems

NameKindAssumesProvesValidatesDepends On
cauchy_iff_tendsto πŸ“–mathematicalβ€”Cauchy
Filter.NeBot
Filter.Tendsto
DivInvMonoid.toDiv
Group.toDivInvMonoid
SProd.sprod
Filter
Filter.instSProd
nhds
UniformSpace.toTopologicalSpace
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”uniformity_eq_comap_nhds_one_swapped
isRightUniformGroup
cauchy_iff_tendsto_swapped πŸ“–mathematicalβ€”Cauchy
Filter.NeBot
Filter.Tendsto
DivInvMonoid.toDiv
Group.toDivInvMonoid
SProd.sprod
Filter
Filter.instSProd
nhds
UniformSpace.toTopologicalSpace
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”uniformity_eq_comap_nhds_one
isRightUniformGroup
cauchy_map_iff_tendsto πŸ“–mathematicalβ€”Cauchy
Filter.map
Filter.NeBot
Filter.Tendsto
DivInvMonoid.toDiv
Group.toDivInvMonoid
SProd.sprod
Filter
Filter.instSProd
nhds
UniformSpace.toTopologicalSpace
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”uniformity_eq_comap_nhds_one_swapped
isRightUniformGroup
cauchy_map_iff_tendsto_swapped πŸ“–mathematicalβ€”Cauchy
Filter.map
Filter.NeBot
Filter.Tendsto
DivInvMonoid.toDiv
Group.toDivInvMonoid
SProd.sprod
Filter
Filter.instSProd
nhds
UniformSpace.toTopologicalSpace
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”uniformity_eq_comap_nhds_one
isRightUniformGroup
of_compactSpace πŸ“–mathematicalβ€”IsUniformGroupβ€”CompactSpace.uniformContinuous_of_continuous
instCompactSpaceProd
ContinuousDiv.continuous_div'

MonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_coe_cofinite_of_discrete πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instFunLike
IsDiscrete
SetLike.coe
Subgroup
Subgroup.instSetLike
range
Filter.Tendsto
Filter.cofinite
Filter.cocompact
β€”Filter.Tendsto.comp
Subgroup.tendsto_coe_cofinite_of_discrete
Function.Injective.tendsto_cofinite

MulOpposite

Definitions

NameCategoryTheorems
opUniformEquivLeft πŸ“–CompOpβ€”
opUniformEquivRight πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comap_op_leftUniformSpace πŸ“–mathematicalβ€”UniformSpace.comap
MulOpposite
op
IsTopologicalGroup.leftUniformSpace
instGroup
instTopologicalSpaceMulOpposite
instIsTopologicalGroupMulOpposite
IsTopologicalGroup.rightUniformSpace
β€”UniformSpace.ext
instIsTopologicalGroupMulOpposite
Homeomorph.comap_nhds_eq
Filter.comap_comap
div_eq_mul_inv
comap_op_rightUniformSpace πŸ“–mathematicalβ€”UniformSpace.comap
MulOpposite
op
IsTopologicalGroup.rightUniformSpace
instGroup
instTopologicalSpaceMulOpposite
instIsTopologicalGroupMulOpposite
IsTopologicalGroup.leftUniformSpace
β€”UniformSpace.ext
instIsTopologicalGroupMulOpposite
Homeomorph.comap_nhds_eq
Filter.comap_comap

QuotientAddGroup

Theorems

NameKindAssumesProvesValidatesDepends On
completeSpace_left πŸ“–mathematicalβ€”CompleteSpace
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
IsTopologicalAddGroup.leftUniformSpace
Quotient.addGroup
instTopologicalSpace
UniformSpace.toTopologicalSpace
instIsTopologicalAddGroup
IsLeftUniformAddGroup.toIsTopologicalAddGroup
β€”IsLeftUniformAddGroup.toIsTopologicalAddGroup
UniformSpace.ext
IsLeftUniformAddGroup.uniformity_eq
instIsTopologicalAddGroup
completeSpace_left'
completeSpace_left' πŸ“–mathematicalβ€”CompleteSpace
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
IsTopologicalAddGroup.leftUniformSpace
Quotient.addGroup
instTopologicalSpace
instIsTopologicalAddGroup
β€”instIsTopologicalAddGroup
IsTopologicalAddGroup.completeSpace_rightUniformSpace_iff_leftUniformSpace
completeSpace_right'
completeSpace_right πŸ“–mathematicalβ€”CompleteSpace
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
IsTopologicalAddGroup.rightUniformSpace
Quotient.addGroup
instTopologicalSpace
UniformSpace.toTopologicalSpace
instIsTopologicalAddGroup
IsRightUniformAddGroup.toIsTopologicalAddGroup
β€”IsRightUniformAddGroup.toIsTopologicalAddGroup
UniformSpace.ext
IsRightUniformAddGroup.uniformity_eq
sub_eq_add_neg
instIsTopologicalAddGroup
completeSpace_right'
completeSpace_right' πŸ“–mathematicalβ€”CompleteSpace
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
IsTopologicalAddGroup.rightUniformSpace
Quotient.addGroup
instTopologicalSpace
instIsTopologicalAddGroup
β€”instIsTopologicalAddGroup
IsTopologicalAddGroup.exists_antitone_basis_nhds_zero
Filter.HasAntitoneBasis.map
UniformSpace.complete_of_cauchySeq_tendsto
Filter.comap.isCountablyGenerated
FirstCountableTopology.nhds_generated_countable
instFirstCountableTopology
IsTopologicalAddGroup.toContinuousAdd
sub_eq_add_neg
Set.mem_image
Filter.HasBasis.comap
mk_zero
nhds_eq
forall_true_left
Filter.HasBasis.cauchySeq_iff
LE.le.trans_lt
le_max_left
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
LE.le.trans
le_max_right
LT.lt.le
neg_add_rev
neg_neg
add_neg_cancel_left
mk_add
mk_neg
neg_sub
sub_add_cancel
mk_surjective
le_rfl
Filter.HasAntitoneBasis.toHasBasis
Filter.HasBasis.cauchySeq_iff'
sub_add_sub_cancel
sub_self
mem_of_mem_nhds
Filter.HasAntitoneBasis.mem
cauchySeq_tendsto_of_complete
tendsto_nhds_of_cauchySeq_of_subseq
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
StrictMono.tendsto_atTop
strictMono_nat_of_lt_succ
Filter.Tendsto.comp
Continuous.tendsto
continuous_coinduced_rng

QuotientGroup

Theorems

NameKindAssumesProvesValidatesDepends On
completeSpace_left πŸ“–mathematicalβ€”CompleteSpace
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
IsTopologicalGroup.leftUniformSpace
Quotient.group
instTopologicalSpace
UniformSpace.toTopologicalSpace
instIsTopologicalGroup
IsLeftUniformGroup.toIsTopologicalGroup
β€”IsLeftUniformGroup.toIsTopologicalGroup
UniformSpace.ext
IsLeftUniformGroup.uniformity_eq
instIsTopologicalGroup
completeSpace_left'
completeSpace_left' πŸ“–mathematicalβ€”CompleteSpace
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
IsTopologicalGroup.leftUniformSpace
Quotient.group
instTopologicalSpace
instIsTopologicalGroup
β€”instIsTopologicalGroup
IsTopologicalGroup.completeSpace_rightUniformSpace_iff_leftUniformSpace
completeSpace_right'
completeSpace_right πŸ“–mathematicalβ€”CompleteSpace
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
IsTopologicalGroup.rightUniformSpace
Quotient.group
instTopologicalSpace
UniformSpace.toTopologicalSpace
instIsTopologicalGroup
IsRightUniformGroup.toIsTopologicalGroup
β€”IsRightUniformGroup.toIsTopologicalGroup
UniformSpace.ext
IsRightUniformGroup.uniformity_eq
instIsTopologicalGroup
completeSpace_right'
completeSpace_right' πŸ“–mathematicalβ€”CompleteSpace
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
IsTopologicalGroup.rightUniformSpace
Quotient.group
instTopologicalSpace
instIsTopologicalGroup
β€”instIsTopologicalGroup
IsTopologicalGroup.exists_antitone_basis_nhds_one
Filter.HasAntitoneBasis.map
UniformSpace.complete_of_cauchySeq_tendsto
Filter.comap.isCountablyGenerated
FirstCountableTopology.nhds_generated_countable
instFirstCountableTopology
IsTopologicalGroup.toContinuousMul
div_eq_mul_inv
Filter.HasBasis.comap
mk_one
nhds_eq
Filter.HasBasis.cauchySeq_iff
LE.le.trans_lt
le_max_left
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
LE.le.trans
le_max_right
LT.lt.le
mul_inv_rev
inv_inv
mul_inv_cancel_left
mk_mul
mk_inv
inv_div
div_mul_cancel
mk_surjective
le_rfl
Filter.HasAntitoneBasis.toHasBasis
Filter.HasBasis.cauchySeq_iff'
div_mul_div_cancel
div_self'
mem_of_mem_nhds
Filter.HasAntitoneBasis.mem
cauchySeq_tendsto_of_complete
tendsto_nhds_of_cauchySeq_of_subseq
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
StrictMono.tendsto_atTop
strictMono_nat_of_lt_succ
Filter.Tendsto.comp
Continuous.tendsto
continuous_coinduced_rng

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed_of_discrete πŸ“–mathematicalβ€”IsClosed
SetLike.coe
Subgroup
instSetLike
β€”isDiscrete_iff_discreteTopology
nhds_inter_eq_singleton_of_mem_discrete
one_mem
Filter.preimage_mem_comap
isClosed_of_spaced_out
T1Space.t0Space
T2Space.t1Space
Mathlib.Tactic.Contrapose.contraposeβ‚„
Set.mem_inter
div_mem
eq_of_div_eq_one
isUniformGroup πŸ“–mathematicalβ€”IsUniformGroup
Subgroup
SetLike.instMembership
instSetLike
instUniformSpaceSubtype
toGroup
β€”IsUniformGroup.comap
MonoidHom.instMonoidHomClass
tendsto_coe_cofinite_of_discrete πŸ“–mathematicalIsDiscrete
SetLike.coe
Subgroup
instSetLike
Filter.Tendsto
SetLike.instMembership
Filter.cofinite
Filter.cocompact
β€”IsClosed.tendsto_coe_cofinite_of_isDiscrete
isClosed_of_discrete
isDiscrete_iff_discreteTopology

TendstoLocallyUniformly

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalTendstoLocallyUniformlyPi.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”UniformContinuous.comp_tendstoLocallyUniformly
uniformContinuous_add
prodMk
div πŸ“–mathematicalTendstoLocallyUniformlyPi.instDiv
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”UniformContinuous.comp_tendstoLocallyUniformly
uniformContinuous_div
prodMk
fun_add πŸ“–mathematicalTendstoLocallyUniformlyAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”add
fun_div πŸ“–mathematicalTendstoLocallyUniformlyDivInvMonoid.toDiv
Group.toDivInvMonoid
β€”div
fun_inv πŸ“–mathematicalTendstoLocallyUniformlyInvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”inv
fun_mul πŸ“–mathematicalTendstoLocallyUniformlyMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”mul
fun_neg πŸ“–mathematicalTendstoLocallyUniformlyNegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”neg
fun_sub πŸ“–mathematicalTendstoLocallyUniformlySubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”sub
inv πŸ“–mathematicalTendstoLocallyUniformlyPi.instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”UniformContinuous.comp_tendstoLocallyUniformly
uniformContinuous_inv
mul πŸ“–mathematicalTendstoLocallyUniformlyPi.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”UniformContinuous.comp_tendstoLocallyUniformly
uniformContinuous_mul
prodMk
neg πŸ“–mathematicalTendstoLocallyUniformlyPi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”UniformContinuous.comp_tendstoLocallyUniformly
uniformContinuous_neg
sub πŸ“–mathematicalTendstoLocallyUniformlyPi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”UniformContinuous.comp_tendstoLocallyUniformly
uniformContinuous_sub
prodMk

TendstoLocallyUniformlyOn

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalTendstoLocallyUniformlyOnPi.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”UniformContinuous.comp_tendstoLocallyUniformlyOn
uniformContinuous_add
prodMk
div πŸ“–mathematicalTendstoLocallyUniformlyOnPi.instDiv
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”UniformContinuous.comp_tendstoLocallyUniformlyOn
uniformContinuous_div
prodMk
fun_add πŸ“–mathematicalTendstoLocallyUniformlyOnAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”add
fun_div πŸ“–mathematicalTendstoLocallyUniformlyOnDivInvMonoid.toDiv
Group.toDivInvMonoid
β€”div
fun_inv πŸ“–mathematicalTendstoLocallyUniformlyOnInvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”inv
fun_mul πŸ“–mathematicalTendstoLocallyUniformlyOnMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”mul
fun_neg πŸ“–mathematicalTendstoLocallyUniformlyOnNegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”neg
fun_sub πŸ“–mathematicalTendstoLocallyUniformlyOnSubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”sub
inv πŸ“–mathematicalTendstoLocallyUniformlyOnPi.instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”UniformContinuous.comp_tendstoLocallyUniformlyOn
uniformContinuous_inv
mul πŸ“–mathematicalTendstoLocallyUniformlyOnPi.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”UniformContinuous.comp_tendstoLocallyUniformlyOn
uniformContinuous_mul
prodMk
neg πŸ“–mathematicalTendstoLocallyUniformlyOnPi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”UniformContinuous.comp_tendstoLocallyUniformlyOn
uniformContinuous_neg
sub πŸ“–mathematicalTendstoLocallyUniformlyOnPi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”UniformContinuous.comp_tendstoLocallyUniformlyOn
uniformContinuous_sub
prodMk

TendstoUniformly

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalTendstoUniformlyPi.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”Filter.Eventually.diag_of_prod
UniformContinuous.comp_tendstoUniformly
uniformContinuous_add
prodMk
div πŸ“–mathematicalTendstoUniformlyPi.instDiv
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”Filter.Eventually.diag_of_prod
UniformContinuous.comp_tendstoUniformly
uniformContinuous_div
prodMk
fun_add πŸ“–mathematicalTendstoUniformlyAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”add
fun_div πŸ“–mathematicalTendstoUniformlyDivInvMonoid.toDiv
Group.toDivInvMonoid
β€”div
fun_inv πŸ“–mathematicalTendstoUniformlyInvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”inv
fun_mul πŸ“–mathematicalTendstoUniformlyMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”mul
fun_neg πŸ“–mathematicalTendstoUniformlyNegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”neg
fun_sub πŸ“–mathematicalTendstoUniformlySubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”sub
inv πŸ“–mathematicalTendstoUniformlyPi.instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”UniformContinuous.comp_tendstoUniformly
uniformContinuous_inv
mul πŸ“–mathematicalTendstoUniformlyPi.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”Filter.Eventually.diag_of_prod
UniformContinuous.comp_tendstoUniformly
uniformContinuous_mul
prodMk
neg πŸ“–mathematicalTendstoUniformlyPi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”UniformContinuous.comp_tendstoUniformly
uniformContinuous_neg
sub πŸ“–mathematicalTendstoUniformlyPi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”Filter.Eventually.diag_of_prod
UniformContinuous.comp_tendstoUniformly
uniformContinuous_sub
prodMk

TendstoUniformlyOn

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalTendstoUniformlyOnPi.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”Filter.Eventually.diag_of_prod
UniformContinuous.comp_tendstoUniformlyOn
uniformContinuous_add
prodMk
div πŸ“–mathematicalTendstoUniformlyOnPi.instDiv
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”Filter.Eventually.diag_of_prod
UniformContinuous.comp_tendstoUniformlyOn
uniformContinuous_div
prodMk
fun_add πŸ“–mathematicalTendstoUniformlyOnAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”add
fun_div πŸ“–mathematicalTendstoUniformlyOnDivInvMonoid.toDiv
Group.toDivInvMonoid
β€”div
fun_inv πŸ“–mathematicalTendstoUniformlyOnInvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”inv
fun_mul πŸ“–mathematicalTendstoUniformlyOnMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”mul
fun_neg πŸ“–mathematicalTendstoUniformlyOnNegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”neg
fun_sub πŸ“–mathematicalTendstoUniformlyOnSubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”sub
inv πŸ“–mathematicalTendstoUniformlyOnPi.instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”UniformContinuous.comp_tendstoUniformlyOn
uniformContinuous_inv
mul πŸ“–mathematicalTendstoUniformlyOnPi.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”Filter.Eventually.diag_of_prod
UniformContinuous.comp_tendstoUniformlyOn
uniformContinuous_mul
prodMk
neg πŸ“–mathematicalTendstoUniformlyOnPi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”UniformContinuous.comp_tendstoUniformlyOn
uniformContinuous_neg
sub πŸ“–mathematicalTendstoUniformlyOnPi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”Filter.Eventually.diag_of_prod
UniformContinuous.comp_tendstoUniformlyOn
uniformContinuous_sub
prodMk

TendstoUniformlyOnFilter

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalTendstoUniformlyOnFilterPi.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”Filter.Eventually.diag_of_prod_left
UniformContinuous.comp_tendstoUniformlyOnFilter
uniformContinuous_add
prodMk
div πŸ“–mathematicalTendstoUniformlyOnFilterPi.instDiv
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”Filter.Eventually.diag_of_prod_left
UniformContinuous.comp_tendstoUniformlyOnFilter
uniformContinuous_div
prodMk
fun_add πŸ“–mathematicalTendstoUniformlyOnFilterAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”add
fun_div πŸ“–mathematicalTendstoUniformlyOnFilterDivInvMonoid.toDiv
Group.toDivInvMonoid
β€”div
fun_inv πŸ“–mathematicalTendstoUniformlyOnFilterInvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”inv
fun_mul πŸ“–mathematicalTendstoUniformlyOnFilterMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”mul
fun_neg πŸ“–mathematicalTendstoUniformlyOnFilterNegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”neg
fun_sub πŸ“–mathematicalTendstoUniformlyOnFilterSubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”sub
inv πŸ“–mathematicalTendstoUniformlyOnFilterPi.instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”UniformContinuous.comp_tendstoUniformlyOnFilter
uniformContinuous_inv
mul πŸ“–mathematicalTendstoUniformlyOnFilterPi.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”Filter.Eventually.diag_of_prod_left
UniformContinuous.comp_tendstoUniformlyOnFilter
uniformContinuous_mul
prodMk
neg πŸ“–mathematicalTendstoUniformlyOnFilterPi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”UniformContinuous.comp_tendstoUniformlyOnFilter
uniformContinuous_neg
sub πŸ“–mathematicalTendstoUniformlyOnFilterPi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”Filter.Eventually.diag_of_prod_left
UniformContinuous.comp_tendstoUniformlyOnFilter
uniformContinuous_sub
prodMk

UniformCauchySeqOn

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalUniformCauchySeqOnPi.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”UniformContinuous.comp_uniformCauchySeqOn
uniformContinuous_add
prod'
div πŸ“–mathematicalUniformCauchySeqOnPi.instDiv
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”UniformContinuous.comp_uniformCauchySeqOn
uniformContinuous_div
prod'
fun_add πŸ“–mathematicalUniformCauchySeqOnAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”add
fun_div πŸ“–mathematicalUniformCauchySeqOnDivInvMonoid.toDiv
Group.toDivInvMonoid
β€”div
fun_inv πŸ“–mathematicalUniformCauchySeqOnInvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”inv
fun_mul πŸ“–mathematicalUniformCauchySeqOnMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”mul
fun_neg πŸ“–mathematicalUniformCauchySeqOnNegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”neg
fun_sub πŸ“–mathematicalUniformCauchySeqOnSubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”sub
inv πŸ“–mathematicalUniformCauchySeqOnPi.instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”UniformContinuous.comp_uniformCauchySeqOn
uniformContinuous_inv
mul πŸ“–mathematicalUniformCauchySeqOnPi.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”UniformContinuous.comp_uniformCauchySeqOn
uniformContinuous_mul
prod'
neg πŸ“–mathematicalUniformCauchySeqOnPi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”UniformContinuous.comp_uniformCauchySeqOn
uniformContinuous_neg
sub πŸ“–mathematicalUniformCauchySeqOnPi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”UniformContinuous.comp_uniformCauchySeqOn
uniformContinuous_sub
prod'

UniformEquiv

Definitions

NameCategoryTheorems
inv πŸ“–CompOpβ€”
neg πŸ“–CompOpβ€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
comap_inv_leftUniformSpace πŸ“–mathematicalβ€”UniformSpace.comap
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.inv
DivisionMonoid.toInvolutiveInv
Group.toDivisionMonoid
IsTopologicalGroup.leftUniformSpace
IsTopologicalGroup.rightUniformSpace
β€”UniformSpace.ext
IsTopologicalGroup.toContinuousInv
Homeomorph.comap_nhds_eq
inv_one
Filter.comap_comap
inv_inv
mul_inv_rev
div_eq_mul_inv
comap_neg_leftUniformSpace πŸ“–mathematicalβ€”UniformSpace.comap
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.neg
SubtractionMonoid.toInvolutiveNeg
AddGroup.toSubtractionMonoid
IsTopologicalAddGroup.leftUniformSpace
IsTopologicalAddGroup.rightUniformSpace
β€”UniformSpace.ext
IsTopologicalAddGroup.toContinuousNeg
Homeomorph.comap_nhds_eq
neg_zero
Filter.comap_comap
neg_neg
neg_add_rev
sub_eq_add_neg
isUniformEmbedding_translate_add πŸ“–mathematicalβ€”IsUniformEmbedding
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”uniformity_translate_add
Filter.comap_map
AddRightCancelSemigroup.toIsRightCancelAdd
add_left_injective
isUniformEmbedding_translate_mul πŸ“–mathematicalβ€”IsUniformEmbedding
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”uniformity_translate_mul
Filter.comap_map
RightCancelSemigroup.toIsRightCancelMul
mul_left_injective
tendsto_div_comap_self πŸ“–mathematicalIsDenseInducing
DFunLike.coe
Filter.Tendsto
DivInvMonoid.toDiv
Group.toDivInvMonoid
Filter.comap
nhds
instTopologicalSpaceProd
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”map_div
map_one
MonoidHomClass.toOneHomClass
div_self'
Continuous.tendsto
Continuous.comp
ContinuousDiv.continuous_div'
IsTopologicalGroup.to_continuousDiv
continuous_swap
IsDenseInducing.tendsto_comap_nhds_nhds
tendsto_sub_comap_self πŸ“–mathematicalIsDenseInducing
DFunLike.coe
Filter.Tendsto
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
Filter.comap
nhds
instTopologicalSpaceProd
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”map_sub
map_zero
AddMonoidHomClass.toZeroHomClass
sub_self
Continuous.tendsto
Continuous.comp
ContinuousSub.continuous_sub
IsTopologicalAddGroup.to_continuousSub
continuous_swap
IsDenseInducing.tendsto_comap_nhds_nhds
topologicalAddGroup_is_uniform_of_compactSpace πŸ“–mathematicalβ€”IsUniformAddGroup
IsTopologicalAddGroup.rightUniformSpace
β€”IsUniformAddGroup.of_compactSpace
IsTopologicalAddGroup.to_continuousSub
topologicalGroup_is_uniform_of_compactSpace πŸ“–mathematicalβ€”IsUniformGroup
IsTopologicalGroup.rightUniformSpace
β€”IsUniformGroup.of_compactSpace
IsTopologicalGroup.to_continuousDiv
totallyBounded_iff_subset_finite_iUnion_nhds_one πŸ“–mathematicalβ€”TotallyBounded
Set.Finite
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Monoid.toMulAction
β€”Filter.HasBasis.totallyBounded_iff
Filter.HasBasis.uniformity_of_nhds_one_inv_mul_swapped
Filter.basis_sets
Set.iUnion_congr_Prop
totallyBounded_iff_subset_finite_iUnion_nhds_zero πŸ“–mathematicalβ€”TotallyBounded
Set.Finite
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
HVAdd.hVAdd
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”Filter.HasBasis.totallyBounded_iff
Filter.HasBasis.uniformity_of_nhds_zero_neg_add_swapped
Filter.basis_sets
Set.iUnion_congr_Prop
Set.preimage_vadd_neg
totallyBounded_inv πŸ“–mathematicalTotallyBoundedSet
Set.inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”Set.ext
Set.image_inv_eq_inv
TotallyBounded.image
uniformContinuous_inv
totallyBounded_neg πŸ“–mathematicalTotallyBoundedSet
Set.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”Set.ext
Set.mem_neg
Set.image_neg_eq_neg
TotallyBounded.image
uniformContinuous_neg

---

← Back to Index