Documentation Verification Report

Constructions

📁 Source: Mathlib/Topology/Algebra/IsUniformGroup/Constructions.lean

Statistics

MetricCount
Definitions0
Theoremscomap, comap, isUniformAddGroup, isUniformGroup, instIsUniformAddGroup, instIsUniformGroup, instIsUniformAddGroup, instIsUniformGroup, instIsUniformAddGroupOfDiscreteUniformity, instIsUniformGroupOfDiscreteUniformity, isUniformAddGroup_iInf, isUniformAddGroup_inf, isUniformAddGroup_sInf, isUniformGroup_iInf, isUniformGroup_inf, isUniformGroup_sInf
16
Total16

IsUniformAddGroup

Theorems

NameKindAssumesProvesValidatesDepends On
comap 📖mathematicalIsUniformAddGroup
UniformSpace.comap
DFunLike.coe
IsUniformInducing.isUniformAddGroup

IsUniformGroup

Theorems

NameKindAssumesProvesValidatesDepends On
comap 📖mathematicalIsUniformGroup
UniformSpace.comap
DFunLike.coe
IsUniformInducing.isUniformGroup

IsUniformInducing

Theorems

NameKindAssumesProvesValidatesDepends On
isUniformAddGroup 📖mathematicalIsUniformInducing
DFunLike.coe
IsUniformAddGroupuniformContinuous_iff
map_sub
UniformContinuous.comp
uniformContinuous_sub
UniformContinuous.prodMap
uniformContinuous
isUniformGroup 📖mathematicalIsUniformInducing
DFunLike.coe
IsUniformGroupuniformContinuous_iff
map_div
UniformContinuous.comp
uniformContinuous_div
UniformContinuous.prodMap
uniformContinuous

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
instIsUniformAddGroup 📖mathematicalIsUniformAddGroupuniformSpace
addGroup
uniformSpace_eq
isUniformAddGroup_iInf
IsUniformAddGroup.comap
AddMonoidHom.instAddMonoidHomClass
instIsUniformGroup 📖mathematicalIsUniformGroupuniformSpace
group
uniformSpace_eq
isUniformGroup_iInf
IsUniformGroup.comap
MonoidHom.instMonoidHomClass

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
instIsUniformAddGroup 📖mathematicalIsUniformAddGroup
instUniformSpaceProd
instAddGroup
instUniformSpaceProd.eq_1
isUniformAddGroup_inf
IsUniformAddGroup.comap
AddMonoidHom.instAddMonoidHomClass
instIsUniformGroup 📖mathematicalIsUniformGroup
instUniformSpaceProd
instGroup
instUniformSpaceProd.eq_1
isUniformGroup_inf
IsUniformGroup.comap
MonoidHom.instMonoidHomClass

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instIsUniformAddGroupOfDiscreteUniformity 📖mathematicalIsUniformAddGroupDiscreteUniformity.uniformContinuous
DiscreteUniformity.instProd
instIsUniformGroupOfDiscreteUniformity 📖mathematicalIsUniformGroupDiscreteUniformity.uniformContinuous
DiscreteUniformity.instProd
isUniformAddGroup_iInf 📖mathematicalIsUniformAddGroupiInf
UniformSpace
instInfSetUniformSpace
sInf_range
isUniformAddGroup_sInf
Set.forall_mem_range
isUniformAddGroup_inf 📖mathematicalIsUniformAddGroup
UniformSpace
instMinUniformSpace
inf_eq_iInf
isUniformAddGroup_iInf
isUniformAddGroup_sInf 📖mathematicalIsUniformAddGroupInfSet.sInf
UniformSpace
instInfSetUniformSpace
uniformContinuous_sInf_rng
uniformContinuous_sInf_dom₂
IsUniformAddGroup.uniformContinuous_sub
isUniformGroup_iInf 📖mathematicalIsUniformGroupiInf
UniformSpace
instInfSetUniformSpace
sInf_range
isUniformGroup_sInf
Set.forall_mem_range
isUniformGroup_inf 📖mathematicalIsUniformGroup
UniformSpace
instMinUniformSpace
inf_eq_iInf
isUniformGroup_iInf
isUniformGroup_sInf 📖mathematicalIsUniformGroupInfSet.sInf
UniformSpace
instInfSetUniformSpace
uniformContinuous_sInf_rng
uniformContinuous_sInf_dom₂
IsUniformGroup.uniformContinuous_div

---

← Back to Index