Documentation Verification Report

Lipschitz

📁 Source: Mathlib/Topology/Algebra/MetricSpace/Lipschitz.lean

Statistics

MetricCount
Definitions0
TheoremscauchySeq_comp, cauchySeq_comp, exists_lipschitzOnWith_of_compact, continuousAt_of_locally_lipschitz
4
Total4

LipschitzOnWith

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_comp 📖LipschitzOnWith
PseudoMetricSpace.toPseudoEMetricSpace
CauchySeq
PseudoMetricSpace.toUniformSpace
Nat.instPreorder
Set
Set.instHasSubset
Set.range
cauchySeq_iff_le_tendsto_0
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
NNReal.coe_nonneg
Set.mem_range_self
LE.le.trans
dist_le_mul
mul_le_mul_of_nonneg_left
MulZeroClass.mul_zero
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
IsStrictOrderedRing.toIsTopologicalDivisionRing
Real.instIsStrictOrderedRing
instOrderTopologyReal

LipschitzWith

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_comp 📖LipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
CauchySeq
PseudoMetricSpace.toUniformSpace
Nat.instPreorder
cauchySeq_iff_le_tendsto_0
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
NNReal.coe_nonneg
dist_le_mul_of_le
MulZeroClass.mul_zero
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
IsStrictOrderedRing.toIsTopologicalDivisionRing
Real.instIsStrictOrderedRing
instOrderTopologyReal

LocallyLipschitzOn

Theorems

NameKindAssumesProvesValidatesDepends On
exists_lipschitzOnWith_of_compact 📖mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
LocallyLipschitzOn
PseudoMetricSpace.toPseudoEMetricSpace
LipschitzOnWithcontinuousOn
Metric.mem_nhdsWithin_iff
LipschitzOnWith.mono
IsCompact.bddAbove_image
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
IsCompact.diff
Metric.isOpen_ball
ContinuousOn.div
IsTopologicalDivisionRing.toContinuousInv₀
IsStrictOrderedRing.toIsTopologicalDivisionRing
Real.instIsStrictOrderedRing
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
ContinuousOn.mono
Continuous.comp_continuousOn'
Continuous.dist
continuous_const
continuous_id'
Set.diff_subset
Continuous.continuousOn
LT.lt.ne'
LT.lt.trans_le
not_lt
dist_comm
le_sup_right
edist_nndist
div_le_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
NNReal.instIsStrictOrderedRing
NNReal.coe_pos
coe_nndist
mem_upperBounds
Set.mem_image_of_mem
Nat.instAtLeastTwoHAddOfNat
IsCompact.elim_nhdsWithin_subcover'
inter_mem_nhdsWithin
Metric.ball_mem_nhds
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Set.mem_iUnion₂
LE.le.trans
LT.lt.trans
half_lt_self
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
ENNReal.instIsOrderedRing
ENNReal.coe_le_coe
Finset.le_sup_of_le
le_self_add
NNReal.instCanonicallyOrderedAdd
zero_le
ENNReal.instCanonicallyOrderedAdd
edist_triangle_left
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
Metric.mem_ball_self
add_le_add_right
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
edist_dist
add_le_add
ENNReal.ofReal_le_ofReal
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Metric.mem_ball
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.sub_nonpos_of_le
dist_triangle_left
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.isNat_add
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
ENNReal.coe_le_coe_of_le
le_refl
Finset.le_sup

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_of_locally_lipschitz 📖mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Real.instMul
ContinuousAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
tendsto_iff_dist_tendsto_zero
squeeze_zero'
Filter.Eventually.of_forall
dist_nonneg
Filter.mem_of_superset
Metric.ball_mem_nhds
Continuous.tendsto'
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
IsStrictOrderedRing.toIsTopologicalDivisionRing
Real.instIsStrictOrderedRing
instOrderTopologyReal
continuous_const
Continuous.dist
continuous_id'
dist_self
MulZeroClass.mul_zero

---

← Back to Index