Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Algebra/Module/Basic.lean

Statistics

MetricCount
DefinitionstopologicalSpace, topologicalClosure, linearMapOfMemClosureRangeCoe, linearMapOfTendsto
4
Theoremsof_continuousConstSMul, of_nhds_zero, submodule_topologicalClosure_eq, continuous_on_pi, isClosed_range_coe, punctured_nhds_neBot, closure_coe_iSup_map_single, closure_subset_topologicalClosure_span, continuousSMul_quotient, dense_iff_topologicalClosure_eq_top, eq_top_of_nonempty_interior', isClosed_or_dense_of_isCoatom, isClosed_topologicalClosure, isOpenMap_mkQ, isOpenQuotientMap_mkQ, le_topologicalClosure, mapsTo_smul_closure, smul_closure_subset, t3_quotient_of_isClosed, topologicalAddGroup, topologicalAddGroup_quotient, completeSpace, topologicalClosure_coe, topologicalClosure_iSup_map_single, topologicalClosure_minimal, topologicalClosure_mono, span, continuousSMul_induced, continuousSMul_inducedβ‚›β‚—, instCompleteSpaceSubtypeMemSubmoduleOfIsClosedCoe, linearMapOfMemClosureRangeCoe_apply, linearMapOfTendsto_apply
32
Total36

ContinuousNeg

Theorems

NameKindAssumesProvesValidatesDepends On
of_continuousConstSMul πŸ“–mathematicalβ€”ContinuousNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”neg_smul
one_smul
ContinuousConstSMul.continuous_const_smul

ContinuousSMul

Theorems

NameKindAssumesProvesValidatesDepends On
of_nhds_zero πŸ“–mathematicalFilter.Tendsto
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SProd.sprod
Filter
Filter.instSProd
nhds
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ContinuousSMulβ€”continuous_of_continuousAt_zeroβ‚‚
IsTopologicalRing.to_topologicalAddGroup
IsTopologicalAddGroup.toContinuousAdd
smul_zero
nhds_prod_eq
zero_smul

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
submodule_topologicalClosure_eq πŸ“–mathematicalβ€”Submodule.topologicalClosureβ€”SetLike.ext'
closure_eq

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_on_pi πŸ“–mathematicalβ€”Continuous
Pi.topologicalSpace
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
instFunLike
β€”nonempty_fintype
pi_apply_eq_sum_univ
continuous_finset_sum
Continuous.smul
continuous_apply
continuous_const
isClosed_range_coe πŸ“–mathematicalβ€”IsClosed
Pi.topologicalSpace
Set.range
LinearMap
DFunLike.coe
instFunLike
β€”isClosed_of_closure_subset

Module

Theorems

NameKindAssumesProvesValidatesDepends On
punctured_nhds_neBot πŸ“–mathematicalβ€”Filter.NeBot
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”exists_ne
Filter.Tendsto.inf
zero_smul
add_zero
Filter.Tendsto.add
tendsto_const_nhds
Filter.Tendsto.smul_const
Filter.tendsto_id
Filter.tendsto_principal_principal
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsDomain.toIsCancelMulZero
Filter.Tendsto.neBot

QuotientModule.Quotient

Definitions

NameCategoryTheorems
topologicalSpace πŸ“–CompOp
6 mathmath: Submodule.t3_quotient_of_isClosed, Submodule.isOpenQuotientMap_mkQ, IsModuleTopology.instQuot, Submodule.isOpenMap_mkQ, Submodule.topologicalAddGroup_quotient, Submodule.continuousSMul_quotient

Submodule

Definitions

NameCategoryTheorems
topologicalClosure πŸ“–CompOp
32 mathmath: topologicalClosure_minimal, span_fourier_closure_eq_top, dense_iff_topologicalClosure_eq_top, closure_subset_topologicalClosure_span, IsClosed.submodule_topologicalClosure_eq, compactOperator_topologicalClosure, isClosed_topologicalClosure, topologicalClosure_map, topologicalClosure_eq_self, le_topologicalClosure, HilbertBasis.dense_span, orthogonal_orthogonal_eq_closure, orthogonal_closure, topologicalClosure_mono, topologicalClosure_coe, span_fourierLp_closure_eq_top, topologicalClosure_eq_top_iff, OrthogonalFamily.range_linearIsometry, LinearPMap.closure_def, ContinuousLinearMap.closed_range_of_antilipschitz, UnitAddTorus.span_mFourier_closure_eq_top, LinearPMap.closure_inverse_graph, topologicalClosure_iSup_map_single, UnitAddTorus.span_mFourierLp_closure_eq_top, ContinuousLinearMap.bijective_iff_dense_range_and_antilipschitz, LinearPMap.IsClosable.graph_closure_eq_closure_graph, topologicalClosure.completeSpace, starProjection_tendsto_closure_iSup, mem_closure_iff, ContinuousLinearMap.orthogonal_ker, LinearPMap.IsClosable.existsUnique, HilbertBasis.finite_spans_dense

Theorems

NameKindAssumesProvesValidatesDepends On
closure_coe_iSup_map_single πŸ“–mathematicalβ€”closure
Pi.topologicalSpace
SetLike.coe
Submodule
Pi.addCommMonoid
Pi.module
setLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.single
Set.pi
Set.univ
β€”RingHomSurjective.ids
closure_pi_set
HasSubset.Subset.antisymm
Set.instAntisymmSubset
closure_mono
SetLike.coe_mono
instIsConcreteLE
iSup_map_single_le
closure_minimal
isOpen_pi_iff
Finset.sum_apply
Finset.sum_pi_single
sum_mem
addSubmonoidClass
mem_iSup_of_mem
mem_map_of_mem
Set.mem_univ
isClosed_closure
closure_subset_topologicalClosure_span πŸ“–mathematicalβ€”Set
Set.instHasSubset
closure
SetLike.coe
Submodule
setLike
topologicalClosure
span
β€”topologicalClosure_coe
closure_mono
subset_span
continuousSMul_quotient πŸ“–mathematicalβ€”ContinuousSMul
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
Quotient.instSMul
QuotientModule.Quotient.topologicalSpace
β€”IsOpenQuotientMap.continuous_comp_iff
IsOpenQuotientMap.prodMap
IsOpenQuotientMap.id
isOpenQuotientMap_mkQ
IsTopologicalAddGroup.toContinuousAdd
Continuous.comp
ContinuousSMul.continuous_smul
dense_iff_topologicalClosure_eq_top πŸ“–mathematicalβ€”Dense
SetLike.coe
Submodule
setLike
topologicalClosure
Top.top
instTop
β€”SetLike.coe_set_eq
dense_iff_closure_eq
eq_top_of_nonempty_interior' πŸ“–mathematicalSet.Nonempty
interior
SetLike.coe
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
setLike
Top.top
instTop
β€”eq_top_iff'
Filter.Tendsto.add
tendsto_const_nhds
Filter.Tendsto.smul
tendsto_nhdsWithin_of_tendsto_nhds
Filter.tendsto_id
Filter.nonempty_of_mem
Filter.inter_mem
Filter.mem_map
add_zero
zero_smul
mem_interior_iff_mem_nhds
self_mem_nhdsWithin
mem_of_mem_nhds
smul_mem_iff'
Units.instIsScalarTower
IsScalarTower.left
Units.smul_def
add_mem_iff_right
isClosed_or_dense_of_isCoatom πŸ“–mathematicalIsCoatom
Submodule
PartialOrder.toPreorder
instPartialOrder
instOrderTop
IsClosed
SetLike.coe
setLike
Dense
β€”isClosed_closure
dense_iff_topologicalClosure_eq_top
IsCoatom.le_iff
le_topologicalClosure
isClosed_topologicalClosure πŸ“–mathematicalβ€”IsClosed
SetLike.coe
Submodule
setLike
topologicalClosure
β€”isClosed_closure
isOpenMap_mkQ πŸ“–mathematicalβ€”IsOpenMap
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
QuotientModule.Quotient.topologicalSpace
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Quotient.addCommGroup
Quotient.module
LinearMap.instFunLike
mkQ
β€”QuotientAddGroup.isOpenMap_coe
isOpenQuotientMap_mkQ πŸ“–mathematicalβ€”IsOpenQuotientMap
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
QuotientModule.Quotient.topologicalSpace
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Quotient.addCommGroup
Quotient.module
LinearMap.instFunLike
mkQ
β€”β€”
le_topologicalClosure πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosure
β€”subset_closure
mapsTo_smul_closure πŸ“–mathematicalβ€”Set.MapsTo
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
closure
SetLike.coe
Submodule
setLike
β€”smul_mem
Set.MapsTo.closure
ContinuousConstSMul.continuous_const_smul
smul_closure_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.smulSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
closure
SetLike.coe
Submodule
setLike
β€”Set.MapsTo.image_subset
mapsTo_smul_closure
t3_quotient_of_isClosed πŸ“–mathematicalβ€”T3Space
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
QuotientModule.Quotient.topologicalSpace
β€”QuotientAddGroup.instT3Space
AddSubgroup.normal_of_comm
topologicalAddGroup πŸ“–mathematicalβ€”IsTopologicalAddGroup
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
instTopologicalSpaceSubtype
AddCommGroup.toAddGroup
addCommGroup
β€”AddSubgroup.instIsTopologicalAddGroupSubtypeMem
topologicalAddGroup_quotient πŸ“–mathematicalβ€”IsTopologicalAddGroup
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
QuotientModule.Quotient.topologicalSpace
AddCommGroup.toAddGroup
Quotient.addCommGroup
β€”AddSubgroup.normal_of_comm
QuotientAddGroup.instIsTopologicalAddGroup
topologicalClosure_coe πŸ“–mathematicalβ€”SetLike.coe
Submodule
setLike
topologicalClosure
closure
β€”β€”
topologicalClosure_iSup_map_single πŸ“–mathematicalContinuousAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ContinuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
topologicalClosure
Pi.topologicalSpace
Pi.addCommMonoid
Pi.module
instContinuousConstSMulForall
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Pi.continuousAdd
AddSemigroup.toAdd
iSup
Submodule
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.single
pi
Set.univ
β€”SetLike.coe_injective
instContinuousConstSMulForall
Pi.continuousAdd
RingHomSurjective.ids
closure_coe_iSup_map_single
topologicalClosure_minimal πŸ“–mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosureβ€”closure_minimal
topologicalClosure_mono πŸ“–mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
topologicalClosureβ€”closure_mono

Submodule.topologicalClosure

Theorems

NameKindAssumesProvesValidatesDepends On
completeSpace πŸ“–mathematicalβ€”CompleteSpace
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.topologicalClosure
UniformSpace.toTopologicalSpace
instUniformSpaceSubtype
β€”IsClosed.completeSpace_coe
isClosed_closure

TopologicalSpace.IsSeparable

Theorems

NameKindAssumesProvesValidatesDepends On
span πŸ“–mathematicalTopologicalSpace.IsSeparableSetLike.coe
Submodule
Submodule.setLike
Submodule.span
β€”Submodule.span_eq_iUnion_nat
iUnion
instCountableNat
image
TopologicalSpace.isSeparable_pi
instCountableFin
prod
of_separableSpace
Set.univ_prod
continuous_finset_sum
Continuous.smul
Continuous.comp
continuous_fst
continuous_apply
continuous_snd

(root)

Definitions

NameCategoryTheorems
linearMapOfMemClosureRangeCoe πŸ“–CompOp
1 mathmath: linearMapOfMemClosureRangeCoe_apply
linearMapOfTendsto πŸ“–CompOp
1 mathmath: linearMapOfTendsto_apply

Theorems

NameKindAssumesProvesValidatesDepends On
continuousSMul_induced πŸ“–mathematicalβ€”ContinuousSMul
TopologicalSpace.induced
DFunLike.coe
β€”continuousSMul_inducedβ‚›β‚—
continuous_id
continuousSMul_inducedβ‚›β‚— πŸ“–mathematicalContinuousContinuousSMul
TopologicalSpace.induced
DFunLike.coe
β€”Topology.IsInducing.continuousSMul
MulActionSemiHomClass.map_smulβ‚›β‚—
instCompleteSpaceSubtypeMemSubmoduleOfIsClosedCoe πŸ“–mathematicalβ€”CompleteSpace
Submodule
SetLike.instMembership
Submodule.setLike
instUniformSpaceSubtype
β€”IsComplete.completeSpace_coe
IsClosed.isComplete
linearMapOfMemClosureRangeCoe_apply πŸ“–mathematicalSet
Set.instMembership
closure
Pi.topologicalSpace
Set.range
LinearMap
DFunLike.coe
LinearMap.instFunLike
linearMapOfMemClosureRangeCoe
ZeroHom.toFun
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.toZeroHom
addMonoidHomOfMemClosureRangeCoe
β€”β€”
linearMapOfTendsto_apply πŸ“–mathematicalFilter.Tendsto
DFunLike.coe
LinearMap
LinearMap.instFunLike
nhds
Pi.topologicalSpace
linearMapOfTendstoβ€”β€”

---

← Back to Index