Documentation Verification Report

Cardinality

πŸ“ Source: Mathlib/Topology/Algebra/Module/Cardinality.lean

Statistics

MetricCount
Definitions0
Theoremsdense_compl, cardinal_eq_of_isOpen, cardinal_eq_of_mem_nhds, cardinal_eq_of_mem_nhds_zero, continuum_le_cardinal_of_isOpen, continuum_le_cardinal_of_module, continuum_le_cardinal_of_nontriviallyNormedField
7
Total7

Set.Countable

Theorems

NameKindAssumesProvesValidatesDepends On
dense_compl πŸ“–mathematicalβ€”Dense
Compl.compl
Set
Set.instCompl
β€”interior_eq_empty_iff_dense_compl
lt_irrefl
Cardinal.aleph0_lt_continuum
continuum_le_cardinal_of_isOpen
isOpen_interior
Set.notMem_singleton_empty
Cardinal.mk_le_mk_of_subset
interior_subset
le_aleph0

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
cardinal_eq_of_isOpen πŸ“–mathematicalIsOpen
Set.Nonempty
Set.Elemβ€”cardinal_eq_of_mem_nhds
IsOpen.mem_nhds
cardinal_eq_of_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.Elemβ€”ContinuousAt.preimage_mem_nhds
Continuous.continuousAt
Homeomorph.continuous
add_zero
cardinal_eq_of_mem_nhds_zero
Cardinal.mk_subtype_of_equiv
cardinal_eq_of_mem_nhds_zero πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.Elemβ€”NormedField.exists_lt_norm
pow_ne_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
lt_irrefl
LT.lt.trans
norm_zero
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
tendsto_pow_atTop_nhds_zero_of_norm_lt_one
norm_inv
inv_lt_one_of_one_ltβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Filter.Tendsto.smul_const
Filter.mp_mem
zero_smul
Filter.univ_mem'
Set.mem_smul_set_iff_inv_smul_memβ‚€
Set.smul_mem_smul_set
smul_smul
mul_inv_cancelβ‚€
one_smul
Subtype.coe_eta
inv_mul_cancelβ‚€
Cardinal.mk_congr
Cardinal.mk_of_countable_eventually_mem
instCountableNat
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
continuum_le_cardinal_of_isOpen πŸ“–mathematicalIsOpen
Set.Nonempty
Cardinal
Cardinal.instLE
Cardinal.continuum
Set.Elem
β€”cardinal_eq_of_isOpen
continuum_le_cardinal_of_module
continuum_le_cardinal_of_module πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Cardinal.continuum
β€”Cardinal.lift_continuum
continuum_le_cardinal_of_nontriviallyNormedField
LE.le.trans
Cardinal.mk_le_of_module
Field.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
continuum_le_cardinal_of_nontriviallyNormedField πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Cardinal.continuum
β€”Perfect.exists_nat_bool_injection
isClosed_univ
preperfect_iff_nhds
NormedField.exists_norm_lt_one
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
tendsto_const_nhds
tendsto_pow_atTop_nhds_zero_of_norm_lt_one
Filter.tendsto_def
add_zero
Filter.Eventually.exists
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Set.inter_univ
AddLeftCancelSemigroup.toIsLeftCancelAdd
pow_ne_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Set.univ_nonempty
Nontrivial.to_nonempty
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Nat.instAtLeastTwoHAddOfNat
Cardinal.mk_pi
Cardinal.mk_fintype
Cardinal.prod_const
Cardinal.lift_id
Cardinal.mk_eq_aleph0
instCountableNat
instInfiniteNat
Cardinal.lift_continuum
Cardinal.lift_uzero
Cardinal.lift_mk_le_lift_mk_of_injective

---

← Back to Index