Documentation Verification Report

FiniteDimension

πŸ“ Source: Mathlib/Topology/Algebra/Module/FiniteDimension.lean

Statistics

MetricCount
DefinitionsofFinrankEq, toContinuousLinearEquivOfDetNeZero, toContinuousLinearEquiv, toContinuousLinearMap, constrL, equivFunL, toContinuousLinearMap
7
Theoremscoe_toContinuousLinearEquivOfDetNeZero, exists_right_inverse_of_surjective, finiteDimensional, instModuleFinite, toContinuousLinearEquivOfDetNeZero_apply, toLinearMap_eq_iff_eq_toContinuousLinearMap, complete, nonempty_continuousLinearEquiv_iff_finrank_eq, nonempty_continuousLinearEquiv_of_finrank_eq, canLiftContinuousLinearEquiv, coe_toContinuousLinearEquiv, coe_toContinuousLinearEquiv', coe_toContinuousLinearEquiv_symm, coe_toContinuousLinearEquiv_symm', toLinearEquiv_toContinuousLinearEquiv, toLinearEquiv_toContinuousLinearEquiv_symm, canLiftContinuousLinearMap, coe_toContinuousLinearMap, coe_toContinuousLinearMap', coe_toContinuousLinearMap_symm, continuousLinearMapClassOfFiniteDimensional, continuous_iff_isClosed_ker, continuous_of_finiteDimensional, continuous_of_isClosed_ker, continuous_of_nonzero_on_open, det_toContinuousLinearMap, isClosedEmbedding_of_injective, isOpenMap_of_finiteDimensional, ker_toContinuousLinearMap, range_toContinuousLinearMap, toContinuousLinearMap_eq_iff_eq_toLinearMap, of_finiteDimensional_of_complete, toLin_finTwoProd_toContinuousLinearMap, coe_constrL, constrL_apply, constrL_basis, equivFunL_apply, equivFunL_symm_apply_repr, closed_of_finiteDimensional, complete_of_finiteDimensional, continuous_equivFun_basis, isClosedEmbedding_smul_left, isClosedMap_smul_left, isModuleTopologyOfFiniteDimensional, unique_topology_of_t2
45
Total52

ContinuousLinearEquiv

Definitions

NameCategoryTheorems
ofFinrankEq πŸ“–CompOpβ€”

ContinuousLinearMap

Definitions

NameCategoryTheorems
toContinuousLinearEquivOfDetNeZero πŸ“–CompOp
2 mathmath: coe_toContinuousLinearEquivOfDetNeZero, toContinuousLinearEquivOfDetNeZero_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toContinuousLinearEquivOfDetNeZero πŸ“–mathematicalβ€”ContinuousLinearEquiv.toContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
toContinuousLinearEquivOfDetNeZero
β€”ext
RingHomInvPair.ids
exists_right_inverse_of_surjective πŸ“–mathematicalLinearMap.range
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
toLinearMap
Top.top
Submodule
Submodule.instTop
comp
RingHomCompTriple.ids
id
β€”RingHomSurjective.ids
RingHomCompTriple.ids
LinearMap.exists_rightInverse_of_surjective
Module.Projective.of_free
Module.Free.of_divisionRing
RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul
finiteDimensional πŸ“–mathematicalβ€”FiniteDimensional
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Field.toDivisionRing
addCommGroup
DivisionRing.toRing
module
DivisionRing.toDivisionSemiring
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
β€”smulCommClass_self
instModuleFinite
isNoetherian_of_isNoetherianRing_of_finite
IsSimpleModule.instIsNoetherian
instIsSimpleModule
instModuleFinite πŸ“–mathematicalβ€”Module.Finite
ContinuousLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
AddCommGroup.toAddGroup
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
β€”Module.Finite.of_injective
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
isNoetherian_linearMap
coe_injective
toContinuousLinearEquivOfDetNeZero_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
toContinuousLinearEquivOfDetNeZero
ContinuousLinearMap
funLike
β€”RingHomInvPair.ids
toLinearMap_eq_iff_eq_toContinuousLinearMap πŸ“–mathematicalβ€”toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
LinearMap
ContinuousLinearMap
LinearMap.addCommMonoid
addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
AddCommGroup.toAddGroup
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
module
ContinuousSMul.continuousConstSMul
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toContinuousLinearMap
β€”RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul

FiniteDimensional

Theorems

NameKindAssumesProvesValidatesDepends On
complete πŸ“–mathematicalβ€”CompleteSpaceβ€”RingHomInvPair.ids
IsUniformAddGroup.to_topologicalAddGroup
Pi.topologicalAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
instContinuousSMulForall
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Pi.t2Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
finiteDimensional_pi'
Finite.of_fintype
finiteDimensional_self
Module.finrank_fin_fun
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
ContinuousLinearEquiv.isUniformEmbedding
Pi.instIsUniformAddGroup
SeminormedAddCommGroup.to_isUniformAddGroup
completeSpace_congr
Pi.complete
nonempty_continuousLinearEquiv_iff_finrank_eq πŸ“–mathematicalβ€”ContinuousLinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Module.finrank
β€”RingHomInvPair.ids
LinearEquiv.finrank_eq
nonempty_continuousLinearEquiv_of_finrank_eq
nonempty_continuousLinearEquiv_of_finrank_eq πŸ“–mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
β€”Nonempty.map
RingHomInvPair.ids
nonempty_linearEquiv_of_finrank_eq
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing

LinearEquiv

Definitions

NameCategoryTheorems
toContinuousLinearEquiv πŸ“–CompOp
6 mathmath: toLinearEquiv_toContinuousLinearEquiv_symm, coe_toContinuousLinearEquiv_symm, coe_toContinuousLinearEquiv', coe_toContinuousLinearEquiv_symm', toLinearEquiv_toContinuousLinearEquiv, coe_toContinuousLinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
canLiftContinuousLinearEquiv πŸ“–mathematicalβ€”CanLift
LinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
ContinuousLinearEquiv
ContinuousLinearEquiv.toLinearEquiv
β€”RingHomInvPair.ids
toLinearEquiv_toContinuousLinearEquiv
coe_toContinuousLinearEquiv πŸ“–mathematicalβ€”ContinuousLinearMap.toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearEquiv.toContinuousLinearMap
RingHomInvPair.ids
toContinuousLinearEquiv
toLinearMap
β€”RingHomInvPair.ids
coe_toContinuousLinearEquiv' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
toContinuousLinearEquiv
LinearEquiv
DFinsupp.instEquivLikeLinearEquiv
β€”RingHomInvPair.ids
coe_toContinuousLinearEquiv_symm πŸ“–mathematicalβ€”ContinuousLinearMap.toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearEquiv.toContinuousLinearMap
RingHomInvPair.ids
ContinuousLinearEquiv.symm
toContinuousLinearEquiv
toLinearMap
symm
β€”RingHomInvPair.ids
coe_toContinuousLinearEquiv_symm' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
ContinuousLinearEquiv.symm
toContinuousLinearEquiv
LinearEquiv
DFinsupp.instEquivLikeLinearEquiv
symm
β€”RingHomInvPair.ids
toLinearEquiv_toContinuousLinearEquiv πŸ“–mathematicalβ€”ContinuousLinearEquiv.toLinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
toContinuousLinearEquiv
β€”RingHomInvPair.ids
ext
toLinearEquiv_toContinuousLinearEquiv_symm πŸ“–mathematicalβ€”ContinuousLinearEquiv.toLinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
ContinuousLinearEquiv.symm
toContinuousLinearEquiv
symm
β€”RingHomInvPair.ids
ext

LinearMap

Definitions

NameCategoryTheorems
toContinuousLinearMap πŸ“–CompOp
17 mathmath: det_toContinuousLinearMap, adjoint_eq_toCLM_adjoint, isSelfAdjoint_toContinuousLinearMap_iff, coe_toContinuousLinearMap', adjoint_toContinuousLinearMap, range_toContinuousLinearMap, Orientation.areaForm'_apply, coe_toContinuousLinearMap, toContinuousLinearMap_eq_iff_eq_toLinearMap, isPositive_toContinuousLinearMap_iff, ContinuousLinearMap.toLinearMap_eq_iff_eq_toContinuousLinearMap, Matrix.l2_opNNNorm_def, Matrix.toLin_finTwoProd_toContinuousLinearMap, isStarProjection_toContinuousLinearMap_iff, coe_toContinuousLinearMap_symm, Matrix.l2_opNorm_def, ker_toContinuousLinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
canLiftContinuousLinearMap πŸ“–mathematicalβ€”CanLift
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap
ContinuousLinearMap.toLinearMap
β€”RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul
coe_toContinuousLinearMap πŸ“–mathematicalβ€”ContinuousLinearMap.toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
LinearMap
ContinuousLinearMap
addCommMonoid
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
AddCommGroup.toAddGroup
module
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
ContinuousLinearMap.module
ContinuousSMul.continuousConstSMul
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toContinuousLinearMap
β€”RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul
coe_toContinuousLinearMap' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.funLike
LinearEquiv
RingHomInvPair.ids
LinearMap
addCommMonoid
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
AddCommGroup.toAddGroup
module
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
ContinuousLinearMap.module
ContinuousSMul.continuousConstSMul
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toContinuousLinearMap
instFunLike
β€”RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul
coe_toContinuousLinearMap_symm πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
ContinuousLinearMap
AddCommGroup.toAddCommMonoid
LinearMap
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
AddCommGroup.toAddGroup
addCommMonoid
ContinuousLinearMap.module
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
ContinuousSMul.continuousConstSMul
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
toContinuousLinearMap
ContinuousLinearMap.toLinearMap
β€”RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul
continuousLinearMapClassOfFiniteDimensional πŸ“–mathematicalβ€”ContinuousLinearMapClass
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instFunLike
β€”semilinearMapClass
continuous_of_finiteDimensional
continuous_iff_isClosed_ker πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
instFunLike
IsClosed
SetLike.coe
Submodule
Submodule.setLike
ker
β€”IsClosed.preimage
isClosed_singleton
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
continuous_of_isClosed_ker
continuous_of_finiteDimensional πŸ“–mathematicalβ€”Continuous
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instFunLike
β€”IsModuleTopology.continuous_of_linearMap
isModuleTopologyOfFiniteDimensional
IsTopologicalAddGroup.toContinuousAdd
continuous_of_isClosed_ker πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
instFunLike
β€”RingHomSurjective.ids
range_eq_bot
Submodule.finrank_eq_zero
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
FiniteDimensional.finiteDimensional_submodule
FiniteDimensional.finiteDimensional_self
continuous_zero
le_antisymm
Submodule.finrank_le
Module.finrank_self
zero_lt_iff
le_refl
ker_eq_bot
Submodule.ker_liftQ_eq_bot
range_eq_top
Submodule.range_liftQ
Submodule.eq_top_of_finrank_eq
RingHomInvPair.ids
unique_topology_of_t2
topologicalAddGroup_induced
Submodule.topologicalAddGroup_quotient
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
continuousSMul_induced
Submodule.continuousSMul_quotient
instMulActionSemiHomClassMulActionHom
t2Space_iff
separated_by_continuous
T25Space.t2Space
T3Space.t25Space
Submodule.t3_quotient_of_isClosed
continuous_induced_dom
Equiv.injective
Equiv.induced_symm
continuous_coinduced_rng
Continuous.comp
continuous_of_nonzero_on_open πŸ“–mathematicalIsOpen
Set.Nonempty
Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
instFunLike
β€”continuous_of_isClosed_ker
isClosed_or_dense_ker
IsTopologicalAddGroup.toContinuousAdd
instIsSimpleModule
mem_interior_iff_mem_nhds
Filter.mem_of_superset
IsOpen.mem_nhds
Dense.interior_compl
det_toContinuousLinearMap πŸ“–mathematicalβ€”ContinuousLinearMap.det
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NormedField.toField
NontriviallyNormedField.toNormedField
DFunLike.coe
LinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
AddCommGroup.toAddCommMonoid
ContinuousLinearMap
addCommMonoid
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
AddCommGroup.toAddGroup
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
ContinuousLinearMap.module
ContinuousSMul.continuousConstSMul
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toContinuousLinearMap
MonoidHom
CommSemiring.toSemiring
CommRing.toCommSemiring
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
MonoidHom.instFunLike
det
β€”RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul
isClosedEmbedding_of_injective πŸ“–mathematicalker
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
Bot.bot
Submodule
Submodule.instBot
Topology.IsClosedEmbedding
DFunLike.coe
LinearMap
instFunLike
β€”RingHomInvPair.ids
RingHomSurjective.invPair
ker_eq_bot
Submodule.topologicalAddGroup
SMulMemClass.continuousSMul
Submodule.smulMemClass
instT2SpaceSubtype
Topology.IsEmbedding.comp
Topology.IsEmbedding.subtypeVal
Homeomorph.isEmbedding
Submodule.closed_of_finiteDimensional
RingHomSurjective.ids
finiteDimensional_range
isOpenMap_of_finiteDimensional πŸ“–mathematicalDFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instFunLike
IsOpenMapβ€”IsModuleTopology.isOpenMap_of_surjective
isModuleTopologyOfFiniteDimensional
IsTopologicalAddGroup.toContinuousAdd
ker_toContinuousLinearMap πŸ“–mathematicalβ€”ker
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap.toLinearMap
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
LinearMap
ContinuousLinearMap
addCommMonoid
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
AddCommGroup.toAddGroup
module
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
ContinuousLinearMap.module
ContinuousSMul.continuousConstSMul
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toContinuousLinearMap
β€”β€”
range_toContinuousLinearMap πŸ“–mathematicalβ€”range
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
ContinuousLinearMap.toLinearMap
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
LinearMap
ContinuousLinearMap
addCommMonoid
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
AddCommGroup.toAddGroup
module
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
ContinuousLinearMap.module
ContinuousSMul.continuousConstSMul
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toContinuousLinearMap
β€”RingHomSurjective.ids
RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul
toContinuousLinearMap_eq_iff_eq_toLinearMap πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
AddCommGroup.toAddCommMonoid
ContinuousLinearMap
addCommMonoid
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
AddCommGroup.toAddGroup
module
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
ContinuousLinearMap.module
ContinuousSMul.continuousConstSMul
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toContinuousLinearMap
ContinuousLinearMap.toLinearMap
β€”RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul

LocallyCompactSpace

Theorems

NameKindAssumesProvesValidatesDepends On
of_finiteDimensional_of_complete πŸ“–mathematicalβ€”LocallyCompactSpaceβ€”ContinuousSMul.continuousConstSMul
Module.Basis.exists_basis
SeparationQuotient.instModuleFinite
Topology.IsOpenEmbedding.locallyCompactSpace
Function.locallyCompactSpace_of_finite
Finite.of_fintype
RingHomInvPair.ids
SeparationQuotient.instIsTopologicalAddGroup
SeparationQuotient.instContinuousSMul
Pi.topologicalAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
instContinuousSMulForall
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SeparationQuotient.t2Space
instR1Space
IsTopologicalAddGroup.regularSpace
Pi.t2Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Homeomorph.isOpenEmbedding
Topology.IsInducing.locallyCompactSpace
IsClosed.isLocallyClosed
isClosed_univ

Matrix

Theorems

NameKindAssumesProvesValidatesDepends On
toLin_finTwoProd_toContinuousLinearMap πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
AddCommGroup.toAddCommMonoid
Prod.instAddCommGroup
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Prod.instModule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
ContinuousLinearMap
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
LinearMap.addCommMonoid
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
AddCommGroup.toAddGroup
Prod.instIsTopologicalAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
ContinuousLinearMap.module
ContinuousSMul.continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Prod.continuousSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
IsModuleTopology.toContinuousSMul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
isModuleTopologyOfFiniteDimensional
NormedSpace.toModule
NormedField.toNormedSpace
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
MetricSpace.toEMetricSpace
NormedField.toMetricSpace
FiniteDimensional.finiteDimensional_self
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toContinuousLinearMap
Prod.t2Space
Module.IsNoetherian.finite
DivisionRing.toDivisionSemiring
isNoetherian_prod
NormedRing.toRing
NormedCommRing.toNormedRing
IsSimpleModule.instIsNoetherian
instIsSimpleModule
CommSemiring.toSemiring
Semifield.toCommSemiring
Matrix
Prod.instAddCommMonoid
addCommMonoid
module
CommSemiring.toCommMonoid
toLin
Fin.fintype
Finite.of_fintype
Module.Basis.finTwoProd
Equiv
Equiv.instEquivLike
of
vecCons
vecEmpty
ContinuousLinearMap.prod
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.add
IsTopologicalSemiring.toContinuousAdd
ContinuousLinearMap.instSMul
NonUnitalNonAssocSemiring.toDistribSMul
Algebra.to_smulCommClass
Algebra.id
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
ContinuousLinearMap.fst
ContinuousLinearMap.snd
β€”ContinuousLinearMap.ext
RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousAdd
Prod.instIsTopologicalAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
smulCommClass_self
ContinuousSMul.continuousConstSMul
Prod.continuousSMul
IsModuleTopology.toContinuousSMul
isModuleTopologyOfFiniteDimensional
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
FiniteDimensional.finiteDimensional_self
Prod.t2Space
Module.IsNoetherian.finite
isNoetherian_prod
IsSimpleModule.instIsNoetherian
instIsSimpleModule
Finite.of_fintype
IsTopologicalSemiring.toContinuousAdd
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
toLin_finTwoProd_apply

Module.Basis

Definitions

NameCategoryTheorems
constrL πŸ“–CompOp
3 mathmath: constrL_basis, constrL_apply, coe_constrL
equivFunL πŸ“–CompOp
6 mathmath: NumberField.mixedEmbedding.fundamentalCone.abs_det_completeBasis_equivFunL_symm, equivFunL_symm_apply_repr, equivFunL_apply, parallelepiped_eq_map, opNNNorm_le, opNorm_le

Theorems

NameKindAssumesProvesValidatesDepends On
coe_constrL πŸ“–mathematicalβ€”ContinuousLinearMap.toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
constrL
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
LinearMap
Pi.addCommMonoid
LinearMap.addCommMonoid
Pi.Function.module
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
constr
β€”β€”
constrL_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.funLike
constrL
Finite.of_fintype
Finset.sum
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
LinearEquiv
RingHomInvPair.ids
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
equivFun
β€”constr_apply_fintype
constrL_basis πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.funLike
constrL
Module.Basis
instFunLike
β€”constr_basis
equivFunL_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Pi.addCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
Pi.Function.module
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
equivFunL
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearEquiv.instEquivLike
repr
β€”RingHomInvPair.ids
equivFunL_symm_apply_repr πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Pi.addCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
AddCommGroup.toAddCommMonoid
Pi.Function.module
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
ContinuousLinearEquiv.symm
equivFunL
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
DFinsupp.instEquivLikeLinearEquiv
repr
β€”ContinuousLinearEquiv.symm_apply_apply
RingHomInvPair.ids

Module.End

Definitions

NameCategoryTheorems
toContinuousLinearMap πŸ“–CompOpβ€”

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
closed_of_finiteDimensional πŸ“–mathematicalβ€”IsClosed
SetLike.coe
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
setLike
β€”IsComplete.isClosed
T1Space.t0Space
T2Space.t1Space
complete_of_finiteDimensional
isUniformAddGroup_of_addCommGroup
complete_of_finiteDimensional πŸ“–mathematicalβ€”IsComplete
SetLike.coe
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
setLike
β€”completeSpace_coe_iff_isComplete
FiniteDimensional.complete
instT2SpaceSubtype
AddSubgroup.isUniformAddGroup
SMulMemClass.continuousSMul
smulMemClass

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_equivFun_basis πŸ“–mathematicalβ€”Continuous
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
DFunLike.coe
LinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.equivFun
β€”LinearMap.continuous_of_finiteDimensional
Pi.topologicalAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
instContinuousSMulForall
IsModuleTopology.toContinuousSMul
isModuleTopologyOfFiniteDimensional
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
FiniteDimensional.finiteDimensional_self
Module.Basis.finiteDimensional_of_finite
RingHomInvPair.ids
isClosedEmbedding_smul_left πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”LinearMap.isClosedEmbedding_of_injective
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
FiniteDimensional.finiteDimensional_self
LinearMap.ker_toSpanSingleton
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
isClosedMap_smul_left πŸ“–mathematicalβ€”IsClosedMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”smul_zero
isClosedMap_const
T2Space.t1Space
Topology.IsClosedEmbedding.isClosedMap
isClosedEmbedding_smul_left
isModuleTopologyOfFiniteDimensional πŸ“–mathematicalβ€”IsModuleTopology
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
β€”RingHomInvPair.ids
Finite.of_fintype
IsModuleTopology.continuous_of_linearMap
IsModuleTopology.instPi
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsTopologicalAddGroup.toContinuousAdd
IsModuleTopology.iso
unique_topology_of_t2 πŸ“–mathematicalβ€”UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
NormedField.toMetricSpace
NontriviallyNormedField.toNormedField
β€”IsTopologicalAddGroup.ext
SeminormedAddCommGroup.toIsTopologicalAddGroup
le_antisymm
Filter.HasBasis.ge_iff
Metric.nhds_basis_closedBall
NormedField.exists_norm_lt
IsOpen.mem_nhds
isOpen_compl_singleton
T2Space.t1Space
Set.mem_compl_singleton_iff
norm_ne_zero_iff
LT.lt.ne
balancedCore_mem_nhds_zero
NormedField.nhdsNE_neBot
Filter.mem_of_superset
Metric.mem_closedBall_self
LT.lt.le
mem_closedBall_zero_iff
Balanced.smul_mem
balancedCore_balanced
norm_mul
NormedDivisionRing.toNormMulClass
norm_inv
mul_inv_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
one_mul
LT.lt.trans
Set.notMem_compl_iff
Set.mem_singleton
balancedCore_subset
mul_one
inv_mul_cancelβ‚€
mul_assoc
smul_eq_mul
Filter.map_id
Filter.Tendsto.smul_const
Filter.tendsto_id
zero_smul

---

← Back to Index