Documentation Verification Report

LinearPMap

📁 Source: Mathlib/Topology/Algebra/Module/LinearPMap.lean

Statistics

MetricCount
DefinitionsLinearPMap, HasCore, IsClosable, IsClosed, closure
5
Theoremsclosure_eq, le_domain, closureIsClosable, closure_isClosed, closure_mono, existsUnique, graph_closure_eq_closure_graph, leIsClosable, isClosable, closureHasCore, closure_def, closure_def', closure_inverse_graph, hasCore_def, inverse_closed_iff, inverse_closure, inverse_isClosable_iff, isClosable_iff_exists_closed_extension, le_closure
19
Total24

LinearPMap

Definitions

NameCategoryTheorems
HasCore 📖CompData
1 mathmath: closureHasCore
IsClosable 📖MathDef
2 mathmath: IsClosed.isClosable, isClosable_iff_exists_closed_extension
IsClosed 📖MathDef
5 mathmath: IsSelfAdjoint.isClosed, adjoint_isClosed, IsClosable.closure_isClosed, inverse_closed_iff, isClosable_iff_exists_closed_extension
closure 📖CompOp
11 mathmath: IsClosable.closure_mono, closureHasCore, hasCore_def, HasCore.closure_eq, inverse_isClosable_iff, closure_def', IsClosable.closure_isClosed, closure_def, le_closure, IsClosable.closureIsClosable, IsClosable.graph_closure_eq_closure_graph

Theorems

NameKindAssumesProvesValidatesDepends On
closureHasCore 📖mathematicalHasCore
closure
domain
CommRing.toRing
le_closure
ext
Submodule.ext
domRestrict_apply
closure_def 📖mathematicalIsClosableclosure
LinearPMap
CommRing.toRing
Submodule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
Submodule.topologicalClosure
instTopologicalSpaceProd
graph
closure_def' 📖mathematicalIsClosableclosure
closure_inverse_graph 📖mathematicalLinearMap.ker
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
toFun
Bot.bot
Submodule.instBot
IsClosable
closure
graph
inverse
Submodule.topologicalClosure
instTopologicalSpaceProd
Prod.instAddCommMonoid
Prod.instModule
Prod.continuousConstSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
ContinuousSMul.continuousConstSMul
Prod.continuousAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
Prod.continuousConstSMul
ContinuousSMul.continuousConstSMul
Prod.continuousAdd
RingHomSurjective.ids
RingHomInvPair.ids
inverse_graph
IsClosable.graph_closure_eq_closure_graph
SetLike.ext'
Set.image_congr
HasSubset.Subset.antisymm
Set.instAntisymmSubset
image_closure_subset_closure_image
continuous_swap
Equiv.image_eq_preimage_symm
Continuous.closure_preimage_subset
hasCore_def 📖mathematicalHasCoreclosure
domRestrict
CommRing.toRing
HasCore.closure_eq
inverse_closed_iff 📖mathematicalLinearMap.ker
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
toFun
Bot.bot
Submodule.instBot
IsClosed
inverse
IsClosed.eq_1
RingHomSurjective.ids
RingHomInvPair.ids
inverse_graph
ContinuousLinearEquiv.isClosed_image
inverse_closure 📖mathematicalLinearMap.ker
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
toFun
Bot.bot
Submodule.instBot
IsClosable
closure
inverseeq_of_eq_graph
Prod.continuousConstSMul
ContinuousSMul.continuousConstSMul
Prod.continuousAdd
closure_inverse_graph
IsClosable.graph_closure_eq_closure_graph
inverse_isClosable_iff
inverse_isClosable_iff 📖mathematicalLinearMap.ker
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
toFun
Bot.bot
Submodule.instBot
IsClosable
inverse
closure
LinearMap.ker_eq_bot'
RingHomSurjective.ids
RingHomInvPair.ids
inverse_graph
image_closure_subset_closure_image
continuous_swap
Prod.continuousConstSMul
ContinuousSMul.continuousConstSMul
Prod.continuousAdd
Submodule.topologicalClosure_coe
SetLike.mem_coe
IsClosable.graph_closure_eq_closure_graph
image_iff
toFun_eq_coe
graph_fst_eq_zero_snd
closure_inverse_graph
isClosable_iff_exists_closed_extension 📖mathematicalIsClosable
IsClosed
LinearPMap
CommRing.toRing
le
IsClosable.closure_isClosed
le_closure
IsClosable.leIsClosable
IsClosed.isClosable
le_closure 📖mathematicalLinearPMap
CommRing.toRing
le
closure
le_of_le_graph
Prod.continuousConstSMul
ContinuousSMul.continuousConstSMul
Prod.continuousAdd
IsClosable.graph_closure_eq_closure_graph
Submodule.le_topologicalClosure
closure_def'
le_refl

LinearPMap.HasCore

Theorems

NameKindAssumesProvesValidatesDepends On
closure_eq 📖mathematicalLinearPMap.HasCoreLinearPMap.closure
LinearPMap.domRestrict
CommRing.toRing
le_domain 📖mathematicalLinearPMap.HasCoreSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
LinearPMap.domain
CommRing.toRing

LinearPMap.IsClosable

Theorems

NameKindAssumesProvesValidatesDepends On
closureIsClosable 📖mathematicalLinearPMap.IsClosableLinearPMap.closureLinearPMap.IsClosed.isClosable
closure_isClosed
closure_isClosed 📖mathematicalLinearPMap.IsClosableLinearPMap.IsClosed
LinearPMap.closure
LinearPMap.IsClosed.eq_1
Prod.continuousConstSMul
ContinuousSMul.continuousConstSMul
Prod.continuousAdd
graph_closure_eq_closure_graph
Submodule.isClosed_topologicalClosure
closure_mono 📖mathematicalLinearPMap.IsClosable
LinearPMap
CommRing.toRing
LinearPMap.le
LinearPMap.closureLinearPMap.le_of_le_graph
Prod.continuousConstSMul
ContinuousSMul.continuousConstSMul
Prod.continuousAdd
graph_closure_eq_closure_graph
leIsClosable
Submodule.topologicalClosure_mono
LinearPMap.le_graph_of_le
existsUnique 📖mathematicalLinearPMap.IsClosableExistsUnique
LinearPMap
CommRing.toRing
Submodule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
Submodule.topologicalClosure
instTopologicalSpaceProd
Prod.continuousConstSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
ContinuousSMul.continuousConstSMul
Prod.continuousAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
LinearPMap.graph
existsUnique_of_exists_of_unique
Prod.continuousConstSMul
ContinuousSMul.continuousConstSMul
Prod.continuousAdd
LinearPMap.eq_of_eq_graph
graph_closure_eq_closure_graph 📖mathematicalLinearPMap.IsClosableSubmodule.topologicalClosure
Ring.toSemiring
CommRing.toRing
instTopologicalSpaceProd
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
Prod.continuousConstSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
ContinuousSMul.continuousConstSMul
Prod.continuousAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
LinearPMap.graph
LinearPMap.closure
Prod.continuousConstSMul
ContinuousSMul.continuousConstSMul
Prod.continuousAdd
LinearPMap.closure_def
leIsClosable 📖LinearPMap.IsClosable
LinearPMap
CommRing.toRing
LinearPMap.le
Prod.continuousConstSMul
ContinuousSMul.continuousConstSMul
Prod.continuousAdd
Submodule.topologicalClosure_mono
LinearPMap.le_graph_of_le
Submodule.toLinearPMap_graph_eq
LinearPMap.graph_fst_eq_zero_snd

LinearPMap.IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
isClosable 📖mathematicalLinearPMap.IsClosableIsClosed.submodule_topologicalClosure_eq
Prod.continuousConstSMul
ContinuousSMul.continuousConstSMul
Prod.continuousAdd

(root)

Definitions

NameCategoryTheorems
LinearPMap 📖CompData
45 mathmath: HahnEmbedding.IsPartial.baseEmbedding_le, LinearPMap.zero_domain, LinearPMap.left_le_sup, Module.Baer.chain_linearPMap_of_chain_extensionOf, HahnEmbedding.Partial.orderTop_eq_archimedeanClassMk, LinearPMap.neg_graph, LinearPMap.neg_apply, LinearPMap.sub_domain, HahnEmbedding.Partial.archimedeanClassMk_eq_iff, LinearPMap.instIsScalarTower, LinearPMap.le_graph_iff, HahnEmbedding.Partial.toOrderAddMonoidHom_apply, LinearPMap.smul_domain, HahnEmbedding.Partial.orderTop_eq_iff, LinearPMap.le_of_le_graph, RieszExtension.exists_top, LinearPMap.sub_apply, LinearPMap.coe_smul, LinearPMap.IsFormalAdjoint.le_adjoint, LinearPMap.add_apply, LinearPMap.isSelfAdjoint_def, LinearPMap.right_le_sup, RieszExtension.step, HahnEmbedding.Partial.orderTop_eq_finiteArchimedeanClassMk, HahnEmbedding.Partial.mem_domain, LinearPMap.closure_def, LinearPMap.smul_graph, LinearPMap.neg_domain, LinearPMap.vadd_apply, LinearPMap.vadd_domain, LinearPMap.isClosable_iff_exists_closed_extension, LinearPMap.le_closure, LinearPMap.smul_apply, LinearPMap.instSMulCommClass, LinearPMap.coe_vadd, LinearPMap.domRestrict_le, HahnEmbedding.Partial.exists_domain_eq_top, HahnEmbedding.Partial.exists_isMax, Module.Baer.ExtensionOf.toLinearPMap_injective, LinearPMap.add_domain, LinearPMap.domain_mono, LinearPMap.zero_apply, LinearPMap.IsClosable.existsUnique, LinearPMap.le_of_eqLocus_ge, HahnEmbedding.Partial.toOrderAddMonoidHom_injective

---

← Back to Index