LinearPMap 📖 | CompData | 45 mathmath: HahnEmbedding.IsPartial.baseEmbedding_le, LinearPMap.zero_domain, LinearPMap.left_le_sup, Module.Baer.chain_linearPMap_of_chain_extensionOf, HahnEmbedding.Partial.orderTop_eq_archimedeanClassMk, LinearPMap.neg_graph, LinearPMap.neg_apply, LinearPMap.sub_domain, HahnEmbedding.Partial.archimedeanClassMk_eq_iff, LinearPMap.instIsScalarTower, LinearPMap.le_graph_iff, HahnEmbedding.Partial.toOrderAddMonoidHom_apply, LinearPMap.smul_domain, HahnEmbedding.Partial.orderTop_eq_iff, LinearPMap.le_of_le_graph, RieszExtension.exists_top, LinearPMap.sub_apply, LinearPMap.coe_smul, LinearPMap.IsFormalAdjoint.le_adjoint, LinearPMap.add_apply, LinearPMap.isSelfAdjoint_def, LinearPMap.right_le_sup, RieszExtension.step, HahnEmbedding.Partial.orderTop_eq_finiteArchimedeanClassMk, HahnEmbedding.Partial.mem_domain, LinearPMap.closure_def, LinearPMap.smul_graph, LinearPMap.neg_domain, LinearPMap.vadd_apply, LinearPMap.vadd_domain, LinearPMap.isClosable_iff_exists_closed_extension, LinearPMap.le_closure, LinearPMap.smul_apply, LinearPMap.instSMulCommClass, LinearPMap.coe_vadd, LinearPMap.domRestrict_le, HahnEmbedding.Partial.exists_domain_eq_top, HahnEmbedding.Partial.exists_isMax, Module.Baer.ExtensionOf.toLinearPMap_injective, LinearPMap.add_domain, LinearPMap.domain_mono, LinearPMap.zero_apply, LinearPMap.IsClosable.existsUnique, LinearPMap.le_of_eqLocus_ge, HahnEmbedding.Partial.toOrderAddMonoidHom_injective
|