Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean

Statistics

MetricCount
DefinitionscompContinuousMultilinearMap, apply, addCommMonoid, applyAddHom, codRestrict, compContinuousLinearMap, constOfIsEmpty, domDomCongr, domDomCongrEquiv, funLike, instAdd, instAddCommGroup, instDistribMulAction, instInhabited, instModule, instMulAction, instNeg, instSMul, instSub, instZero, linearDeriv, mkPiAlgebra, mkPiAlgebraFin, mkPiRing, ofSubsingleton, pi, piEquiv, piLinearEquiv, prod, prodEquiv, restrictScalars, smulRight, toContinuousLinearMap, toMultilinearMap, toMultilinearMapLinear, Β«term_[Γ—_]β†’L[_]_Β»
36
TheoremscompContinuousMultilinearMap_coe, add_apply, add_prod_add, codRestrict_apply_coe, codRestrict_toMultilinearMap, coe_coe, coe_continuous, coe_pi, coe_restrictScalars, compContinuousLinearMap_apply, cons_add, cons_smul, constOfIsEmpty_apply, constOfIsEmpty_toMultilinearMap, cont, continuousMapClass, domDomCongrEquiv_apply, domDomCongrEquiv_symm_apply, domDomCongr_apply, domDomCongr_toMultilinearMap, eq_prod_iff, ext, ext_iff, ext_ring, ext_ring_iff, instIsCentralScalar, instIsScalarTower, instSMulCommClass, linearDeriv_apply, map_add_univ, map_coord_zero, map_piecewise_add, map_piecewise_smul, map_smul_univ, map_sum, map_sum_finset, map_update_add, map_update_smul, map_update_sub, map_zero, mkPiAlgebraFin_apply, mkPiAlgebra_apply, mkPiAlgebra_eq_mkPiAlgebraFin, mkPiRing_apply, mkPiRing_apply_one_eq_self, mkPiRing_eq_iff, mkPiRing_eq_zero_iff, mkPiRing_zero, neg_apply, neg_prod_neg, ofSubsingleton_apply_apply, ofSubsingleton_apply_toMultilinearMap, ofSubsingleton_symm_apply_apply, piEquiv_apply, piEquiv_symm_apply, piLinearEquiv_apply, piLinearEquiv_symm_apply, pi_apply, prodEquiv_apply, prodEquiv_symm_apply, prodEquiv_symm_apply_fst, prodEquiv_symm_apply_snd, prod_apply, prod_ext, prod_ext_iff, smulRight_apply, smulRight_toMultilinearMap, smul_apply, smul_prod_smul, sub_apply, sub_prod_sub, sum_apply, toContinuousLinearMap_apply, toMultilinearMapLinear_apply, toMultilinearMap_add, toMultilinearMap_injective, toMultilinearMap_smul, toMultilinearMap_zero, zero_apply, zero_prod_zero
80
Total116

ContinuousLinearMap

Definitions

NameCategoryTheorems
compContinuousMultilinearMap πŸ“–CompOp
25 mathmath: norm_compContinuousMultilinearMap_le, ContinuousMultilinearMap.eq_prod_iff, ContinuousMultilinearMap.piLinearEquiv_symm_apply, ContinuousMultilinearMap.prod_ext_iff, isBoundedBilinearMap_compMultilinear, LinearIsometry.norm_compContinuousMultilinearMap, iteratedFDerivWithin_smul_const_apply, hasFTaylorSeriesUpToOn_pi', ContinuousMultilinearMap.prodEquiv_symm_apply_fst, iteratedFDerivWithin_comp_left, HasFTaylorSeriesUpToOn.continuousLinearMap_comp, compFormalMultilinearSeries_apply, ContinuousMultilinearMap.prodEquiv_symm_apply, compContinuousMultilinearMap_coe, ContinuousMultilinearMap.prodEquiv_symm_apply_snd, ContinuousLinearEquiv.iteratedFDeriv_comp_left, iteratedFDeriv_smul_const_apply, PiTensorProduct.liftIsometry_symm_apply, ContinuousMultilinearMap.piβ‚—α΅’_symm_apply, ContinuousMultilinearMap.piEquiv_symm_apply, ContinuousMultilinearMap.isUniformInducing_postcomp, ContinuousLinearEquiv.continuousMultilinearMapCongrRight_apply, FormalMultilinearSeries.rightInv_coeff, iteratedFDeriv_comp_left, ContinuousLinearEquiv.iteratedFDerivWithin_comp_left

Theorems

NameKindAssumesProvesValidatesDepends On
compContinuousMultilinearMap_coe πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
ContinuousMultilinearMap.funLike
compContinuousMultilinearMap
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
funLike
β€”β€”

ContinuousMultilinearMap

Definitions

NameCategoryTheorems
addCommMonoid πŸ“–CompOp
136 mathmath: fderiv_iteratedFDeriv, HasFDerivWithinAt.continuousMultilinearMap_apply, FormalMultilinearSeries.changeOriginSeries_sum_eq_partialSum_of_finite, norm_iteratedFDerivComponent_le, ContDiffMapSupportedIn.structureMapCLM_eq_of_scalars, FormalMultilinearSeries.changeOriginSeriesTerm_apply, alternatization_apply_apply, ContDiffMapSupportedIn.structureMapCLM_apply, MultilinearMap.mkContinuousMultilinear_apply, norm_compContinuousLinearMapLRight_le, FormalMultilinearSeries.changeOriginSeries_summable_aux₃, piLinearEquiv_symm_apply, HasFDerivWithinAt.linear_multilinear_comp, iteratedFDerivWithin_succ_eq_comp_left, HasFDerivWithinAt.continuousMultilinearMapCompContinuousLinearMap, PiTensorProduct.toDualContinuousMultilinearMap_apply_apply, OrderedFinpartition.norm_compAlongOrderedFinpartitionL_apply_le, norm_smulRightL_le, HasFDerivAt.continuousMultilinearMapCompContinuousLinearMap, ContinuousLinearMap.cpolynomialOn_uncurry_of_multilinear, VectorFourier.fourierPowSMulRight_eq_comp, ContinuousLinearMap.hasFiniteFPowerSeriesOnBall_uncurry_of_multilinear, ContinuousLinearMap.flipMultilinear_apply_apply, uncurrySum_apply, FormalMultilinearSeries.nnnorm_changeOriginSeries_le_tsum, curryFinFinset_symm_apply_const, curryLeft_norm, ContDiffMapSupportedIn.structureMapLM_eq_of_scalars, restrictScalarsLinear_apply, ContDiffMapSupportedIn.uniformSpace_eq_iInf, ContDiffMapSupportedIn.continuous_iff_comp_withOrder, ContinuousLinearMap.analyticWithinAt_uncurry_of_multilinear, FormalMultilinearSeries.iteratedFDerivSeries_eq_zero, ContDiffMapSupportedIn.structureMapCLM_zero_apply, sum_apply, FormalMultilinearSeries.nnnorm_changeOriginSeriesTerm_apply_le, iteratedFDeriv_tsum, ContinuousLinearMap.cpolyomialOn_uncurry_of_multilinear, OrderedFinpartition.compAlongOrderedFinpartitionβ‚—_apply_apply, prodL_apply, ContinuousLinearMap.coe_flipMultilinearEquiv, PiTensorProduct.liftEquiv_symm_apply, FormalMultilinearSeries.nnnorm_changeOriginSeries_apply_le_tsum, ContDiffMapSupportedIn.structureMapLM_apply_withOrder, PiTensorProduct.liftEquiv_apply, fderivWithin_iteratedFDerivWithin, MultilinearMap.mkContinuousLinear_norm_le, piLinearEquiv_apply, ContinuousLinearMap.uncurryLeft_apply, curryFinFinset_apply_const, compContinuousLinearMapLRight_apply, ContinuousLinearMap.continuousMultilinearMapOption_apply_eq_self, apply_apply, flipLinear_apply_apply, ContinuousLinearMap.cpolynomialAt_uncurry_of_multilinear, ContinuousAlternatingMap.toContinuousMultilinearMapLinear_apply, ContinuousAlternatingMap.toContinuousMultilinearMapCLM_apply, ContinuousLinearMap.continuousWithinAt_uncurry_of_multilinear, PiTensorProduct.dualSeminorms_bounded, curryMidEquiv_apply, ContinuousLinearMap.norm_map_tail_le, PiTensorProduct.injectiveSeminorm_apply, fderivWithin_continuousMultilinearMapCompContinuousLinearMap, MultilinearMap.mkContinuousLinear_norm_le', ContinuousLinearEquiv.continuousMultilinearMapCongrRight_symm, ContinuousAlternatingMap.toContinuousMultilinearMapCLM_comp_fderivCompContinuousLinearMap, ContinuousLinearMap.norm_uncurryMid, ContinuousLinearMap.uncurryLeft_norm, ContinuousLinearMap.continuous_uncurry_of_multilinear, ContDiffMapSupportedIn.isUniformEmbedding_pi_structureMapCLM, MultilinearMap.mkContinuousMultilinear_norm_le', curryFinFinset_symm_apply_piecewise_const, ContinuousAlternatingMap.toContinuousMultilinearMap_curryLeft, ContinuousLinearMap.analyticOnNhd_uncurry_of_multilinear, OrderedFinpartition.compAlongOrderedFinpartitionL_apply, ContinuousLinearMap.uncurryMid_apply, ContDiffMapSupportedIn.structureMapCLM_apply_withOrder, continuousMultilinearCurryLeftEquiv_apply, alternatization_apply_toContinuousMultilinearMap, iteratedFDerivComponent_apply, changeOriginSeries_support, ContDiffMapSupportedIn.seminorm_apply, ContinuousLinearMap.continuousOn_uncurry_of_multilinear, piβ‚—α΅’_symm_apply, fderiv_continuousMultilinearMapCompContinuousLinearMap, MultilinearMap.mkContinuousMultilinear_norm_le, hasStrictFDerivAt_compContinuousLinearMap, curryMid_apply, PiTensorProduct.toDualContinuousMultilinearMap_le_projectiveSeminorm, ContinuousLinearMap.hasFDerivAt_uncurry_of_multilinear, HasFDerivAt.linear_multilinear_comp, HasStrictFDerivAt.continuousMultilinearMapCompContinuousLinearMap, ContinuousLinearEquiv.continuousMultilinearMapCongrLeft_apply, compContinuousLinearMapL_apply, prodL_symm_apply, alternatization_apply_toAlternatingMap, ContDiffMapSupportedIn.structureMapLM_zero_injective, curryLeft_apply, ContinuousLinearMap.analyticOn_uncurry_of_multilinear, ContinuousLinearMap.coe_symm_flipMultilinearEquiv, currySum_apply, ContinuousLinearEquiv.continuousMultilinearMapCongrRight_apply, FormalMultilinearSeries.changeOriginSeries_finite_of_finite, ContDiffMapSupportedIn.continuous_iff_comp, continuousMultilinearCurryLeftEquiv_symm_apply, smulRightL_apply, iteratedFDeriv_succ_eq_comp_left, ContDiffMapSupportedIn.structureMapCLM_zero_injective, piβ‚—α΅’_apply, ContinuousLinearEquiv.continuousMultilinearMapCongrLeft_symm, FormalMultilinearSeries.norm_changeOriginSeriesTerm, fderivCompContinuousLinearMap_apply, curryFinFinset_symm_apply, FormalMultilinearSeries.nnnorm_changeOriginSeriesTerm, FormalMultilinearSeries.rightInv_coeff, norm_compContinuousLinearMapL_le, FormalMultilinearSeries.changeOriginSeriesTerm_changeOriginIndexEquiv_symm, ContDiffMapSupportedIn.structureMapLM_zero_apply, ContinuousLinearMap.analyticAt_uncurry_of_multilinear, iteratedFDeriv_tsum_apply, toMultilinearMapLinear_apply, HasStrictFDerivAt.continuousMultilinearMap_apply, curryFinFinset_apply, FormalMultilinearSeries.changeOriginSeriesTerm_bound, ContinuousLinearMap.norm_map_removeNth_le, hasStrictFDerivAt_uncurry, compContinuousLinearMapContinuousMultilinear_apply_apply, ContDiffMapSupportedIn.structureMapLM_apply, isBoundedLinearMap_prod_multilinear, norm_curryMid, ContinuousAlternatingMap.toMultilinearAddHom_apply, PiTensorProduct.injectiveSeminorm_def, OrderedFinpartition.norm_compAlongOrderedFinpartitionL_le, ContinuousLinearMap.continuousAt_uncurry_of_multilinear, curryMidEquiv_symm_apply, HasFDerivAt.continuousMultilinearMap_apply
applyAddHom πŸ“–CompOpβ€”
codRestrict πŸ“–CompOp
2 mathmath: codRestrict_apply_coe, codRestrict_toMultilinearMap
compContinuousLinearMap πŸ“–CompOp
33 mathmath: analyticAt_uncurry_compContinuousLinearMap, HasFDerivWithinAt.continuousMultilinearMapCompContinuousLinearMap, HasFTaylorSeriesUpToOn.comp_continuousAffineMap, HasFDerivAt.continuousMultilinearMapCompContinuousLinearMap, norm_compContinuous_linearIsometry_le, ContinuousLinearEquiv.iteratedFDerivWithin_comp_right, ContinuousLinearMap.iteratedFDerivWithin_comp_right, DifferentiableAt.continuousMultilinearMapCompContinuousLinearMap, compContinuousLinearMapLRight_apply, Differentiable.continuousMultilinearMapCompContinuousLinearMap, compContinuousLinearMap_apply, fderivWithin_continuousMultilinearMapCompContinuousLinearMap, HasFTaylorSeriesUpToOn.compContinuousLinearMap, DifferentiableOn.continuousMultilinearMapCompContinuousLinearMap, PiTensorProduct.mapLMultilinear_apply_apply, PiTensorProduct.liftIsometry_comp_mapL, fderiv_continuousMultilinearMapCompContinuousLinearMap, hasStrictFDerivAt_compContinuousLinearMap, HasStrictFDerivAt.continuousMultilinearMapCompContinuousLinearMap, ContinuousLinearEquiv.continuousMultilinearMapCongrLeft_apply, compContinuousLinearMapL_apply, cpolynomialOn_uncurry_compContinuousLinearMap, analyticWithinAt_uncurry_compContinuousLinearMap, norm_compContinuous_linearIsometryEquiv, analyticOnNhd_uncurry_compContinuousLinearMap, cpolynomialAt_uncurry_compContinuousLinearMap, ContinuousLinearMap.iteratedFDeriv_comp_right, isBoundedLinearMap_continuousMultilinearMap_comp_linear, analyticOn_uncurry_compContinuousLinearMap, norm_compContinuousLinearMap_le, compContinuousLinearMapContinuousMultilinear_apply_apply, DifferentiableWithinAt.continuousMultilinearMapCompContinuousLinearMap, PiTensorProduct.mapLMultilinear_toFun_apply
constOfIsEmpty πŸ“–CompOp
5 mathmath: nnnorm_constOfIsEmpty, constOfIsEmpty_toMultilinearMap, constOfIsEmpty_apply, ContinuousAlternatingMap.constOfIsEmpty_toContinuousMultilinearMap, norm_constOfIsEmpty
domDomCongr πŸ“–CompOp
12 mathmath: AnalyticOn.domDomCongr_iteratedFDerivWithin, domDomCongr_toMultilinearMap, isSymmSndFDerivAt_iff_iteratedFDeriv, AnalyticOn.domDomCongr_iteratedFDeriv, ContDiffWithinAt.domDomCongr_iteratedFDerivWithin, domDomCongr_apply, ContDiffAt.domDomCongr_iteratedFDeriv, alternatization_apply_toContinuousMultilinearMap, norm_domDomCongr, domDomCongrEquiv_apply, isSymmSndFDerivWithinAt_iff_iteratedFDerivWithin, domDomCongrEquiv_symm_apply
domDomCongrEquiv πŸ“–CompOp
2 mathmath: domDomCongrEquiv_apply, domDomCongrEquiv_symm_apply
funLike πŸ“–CompOp
316 mathmath: map_piecewise_smul, FormalMultilinearSeries.comp_rightInv_aux1, HasFDerivWithinAt.continuousMultilinearMap_apply, FormalMultilinearSeries.comp_partialSum, cpolynomialOn, FormalMultilinearSeries.ofScalars_apply_eq', map_smul_univ, NormedSpace.expSeries_summable_of_mem_ball, norm_iteratedFDerivComponent_le, le_mul_prod_of_opNorm_le_of_le, HasFPowerSeriesWithinOnBall.hasSum_sub, analyticAt_uncurry_of_linear, norm_map_snoc_le, Differentiable.continuousMultilinear_apply_const, FormalMultilinearSeries.changeOriginSeriesTerm_apply, alternatization_apply_apply, map_update_sub, FormalMultilinearSeries.congr, coe_coe, iteratedDerivWithin_vcomp_two, mkPiAlgebra_apply, bilinearIteratedFDerivTwo_eq_iteratedFDeriv, MultilinearMap.mkContinuousMultilinear_apply, uniformContinuous_eval_const, HasFPowerSeriesAt.eventually_hasSum, FormalMultilinearSeries.hasSum_of_finite, contDiffAt, HasFDerivWithinAt.linear_multilinear_comp, mkPiRing_apply_one_eq_self, mkPiRing_apply, HasFDerivAt.continuousMultilinear_apply_const, AnalyticOn.iteratedFDerivWithin_comp_perm, FormalMultilinearSeries.ofScalars_apply_eq, HasFPowerSeriesWithinOnBall.isBigO_image_sub_image_sub_deriv_principal, FormalMultilinearSeries.id_apply_one', tensorIteratedFDerivTwo_eq_iteratedFDeriv, HasFPowerSeriesOnBall.hasSum_iteratedFDeriv, curry0_apply, ContinuousLinearMap.cpolynomialOn_uncurry_of_multilinear, HasFDerivAt.multilinear_comp, linearDeriv_apply, NormedSpace.expSeries_apply_eq_div', Real.fourierIntegral_continuousMultilinearMap_apply, Bornology.IsVonNBounded.image_multilinear', iteratedDerivWithin_eq_iteratedFDerivWithin, VectorFourier.fourierPowSMulRight_eq_comp, le_of_opNNNorm_le, ContinuousLinearMap.hasFiniteFPowerSeriesOnBall_uncurry_of_multilinear, ContinuousLinearMap.flipMultilinear_apply_apply, uncurrySum_apply, map_sum, NormedSpace.expSeries_eq_expSeries, NormedSpace.expSeries_summable, FormalMultilinearSeries.comp_coeff_zero, FormalMultilinearSeries.ofScalars_apply_zero, ext_ring_iff, InnerProductSpace.laplacianWithin_eq_iteratedFDerivWithin_complexPlane, TrivSqZeroExt.fst_expSeries, mkPiAlgebraFin_apply, unit_le_opNorm, cauchyPowerSeries_apply, HasFPowerSeriesOnBall.coeff_zero, tensorIteratedFDerivWithinTwo_eq_iteratedFDerivWithin, norm_image_sub_le, NormedSpace.norm_expSeries_summable, MultilinearMap.coe_mkContinuous, map_update_add, curryFinFinset_symm_apply_const, neg_apply, PiTensorProduct.tprodL_toFun, iteratedFDerivWithin_succ_apply_right, le_opNorm, NormedSpace.expSeries_hasSum_exp, FormalMultilinearSeries.hasSum, ContinuousLinearMap.compFormalMultilinearSeries_apply', fderivWithin_continuousMultilinear_apply_const_apply, Quaternion.expSeries_odd_of_imaginary, HasFPowerSeriesWithinAt.coeff_zero, cons_smul, ofSubsingleton_symm_apply_apply, hasFTaylorSeriesUpTo_iteratedFDeriv, map_piecewise_add, ContinuousLinearMap.analyticWithinAt_uncurry_of_multilinear, ordinaryHypergeometricSeries_apply_eq', sum_apply, Bornology.IsVonNBounded.image_multilinear, hasBasis_nhds_zero, compContinuousLinearMap_zero, FormalMultilinearSeries.apply_eq_pow_smul_coeff, fderivWithin_continuousMultilinear_apply_const, continuousMultilinearCurryFin0_symm_apply, FormalMultilinearSeries.compAlongComposition_bound, continuousMultilinearCurryRightEquiv_symm_apply, FormalMultilinearSeries.nnnorm_changeOriginSeriesTerm_apply_le, constOfIsEmpty_apply, ContinuousLinearMap.cpolyomialOn_uncurry_of_multilinear, hasFiniteFPowerSeriesOnBall, analyticAt, norm_map_init_le, ordinaryHypergeometricSeries_apply_zero, NormedSpace.norm_expSeries_summable_of_mem_ball, binomialSeries_apply, cons_add, map_add_univ, FormalMultilinearSeries.nnnorm_changeOriginSeries_apply_le_tsum, iteratedFDerivWithin_one_apply, cpolyomialOn_uncurry_of_linear, hasSum_cauchyPowerSeries_integral, HasFPowerSeriesWithinOnBall.hasSum_derivSeries_of_hasFDerivWithinAt, HasFPowerSeriesAt.isBigO_image_sub_norm_mul_norm_sub, coe_continuous, HasFPowerSeriesOnBall.hasSum, NormedSpace.expSeries_apply_eq, instContinuousEvalConstForall, contDiff, ContinuousLinearMap.uncurryLeft_apply, HasFPowerSeriesWithinOnBall.image_sub_sub_deriv_le, curryFinFinset_apply_const, compContinuousLinearMapLRight_apply, HasFPowerSeriesAt.hasStrictDerivAt, ContinuousLinearMap.continuousMultilinearMapOption_apply_eq_self, apply_apply, flipLinear_apply_apply, hasStrictFDerivAt, pi_apply, toContinuousLinearMap_apply, ContinuousLinearMap.uncurryBilinear_apply, ContinuousLinearMap.cpolynomialAt_uncurry_of_multilinear, Quaternion.expSeries_even_of_imaginary, NormedSpace.expSeries_apply_eq_div, tsum_eval, HasFPowerSeriesAt.apply_eq_zero, FormalMultilinearSeries.comp_coeff_one, iteratedDeriv_vcomp_three, iteratedFDerivWithin_two_apply', ContinuousLinearMap.continuousWithinAt_uncurry_of_multilinear, FormalMultilinearSeries.applyComposition_single, continuousMultilinearCurryFin0_apply, iteratedFDeriv_eq, HasFPowerSeriesOnBall.isBigO_image_sub_image_sub_deriv_principal, HasStrictFDerivAt.continuousMultilinear_apply_const, NormedSpace.expSeries_apply_zero, iteratedFDerivWithin_succ_apply_left, DifferentiableOn.continuousMultilinear_apply_const, cpolynomialAt_uncurry_of_linear, instContinuousEval, compContinuousLinearMap_apply, FormalMultilinearSeries.id_comp, ContinuousLinearMap.norm_map_tail_le, map_coord_zero, ContinuousLinearMap.compContinuousMultilinearMap_coe, iteratedFDeriv_comp_diagonal, InnerProductSpace.laplacianWithin_eq_iteratedFDerivWithin_orthonormalBasis, iteratedDeriv_vcomp_eq_sum_orderedFinpartition, ordinaryHypergeometricSeries_apply_eq, hasSum_eval, HasFPowerSeriesAt.tendsto_partialSum_prod_of_comp, uncurryRight_apply, cpolynomialAt, ratio_le_opNorm, integral_apply, iteratedFDeriv_zero_apply, HasFDerivWithinAt.multilinear_comp, fderiv_continuousMultilinear_apply_const_apply, add_apply, ContinuousLinearMap.continuous_uncurry_of_multilinear, curryRight_apply, NormedSpace.expSeries_apply_eq', curryFinFinset_symm_apply_piecewise_const, InnerProductSpace.laplacianWithin_eq_iteratedFDerivWithin_stdOrthonormalBasis, AnalyticOn.iteratedFDeriv_comp_perm, domDomCongr_apply, analyticOn_uncurry_of_linear, iteratedFDeriv_one_apply, HasFPowerSeriesOnBall.factorial_smul, iteratedFDeriv_succ_apply_right, ContinuousLinearMap.analyticOnNhd_uncurry_of_multilinear, OrderedFinpartition.compAlongOrderedFinpartitionL_apply, FormalMultilinearSeries.comp_coeff_zero', smul_apply, HasFPowerSeriesOnBall.eventually_hasSum, IsSymmSndFDerivAt.iteratedFDeriv_cons, FormalMultilinearSeries.id_apply_zero, PiTensorProduct.mapLMultilinear_apply_apply, ContinuousLinearMap.uncurryMid_apply, HasFPowerSeriesWithinOnBall.coeff_zero, norm_iteratedFDeriv_le, DifferentiableAt.continuousMultilinear_apply_const, InnerProductSpace.laplacian_eq_iteratedFDeriv_stdOrthonormalBasis, ContinuousAlternatingMap.coe_mk, FormalMultilinearSeries.apply_eq_prod_smul_coeff, HasFDerivWithinAt.continuousMultilinear_apply_const, le_opNorm_mul_pow_card_of_le, continuousMultilinearCurryLeftEquiv_apply, HasFPowerSeriesAt.deriv, iteratedFDerivComponent_apply, SchwartzMap.iteratedPDeriv_eq_iteratedFDeriv, hasFDerivAt, ContinuousLinearMap.continuousOn_uncurry_of_multilinear, HasFPowerSeriesWithinAt.isBigO_image_sub_norm_mul_norm_sub, InnerProductSpace.laplacian_eq_iteratedFDeriv_complexPlane, bilinearIteratedFDerivWithinTwo_eq_iteratedFDeriv, hasBasis_nhds_zero_of_basis, uniformContinuous_coe_fun, SchwartzMap.iteratedLineDerivOp_eq_iteratedFDeriv, OrderedFinpartition.compAlongOrderFinpartition_apply, ContDiffAt.iteratedFDeriv_comp_perm, HasFPowerSeriesAt.eventually_hasSum_of_comp, sub_apply, coe_pi, fderiv_continuousMultilinear_apply_const, OrderedFinpartition.applyOrderedFinpartition_apply, analyticOn, curryMid_apply, iteratedDeriv_eq_iteratedFDeriv, HasFPowerSeriesWithinOnBall.iteratedFDerivWithin_eq_sum_of_completeSpace, ContinuousLinearMap.hasFDerivAt_uncurry_of_multilinear, map_update_smul, PiTensorProduct.tprodL_apply, HasFPowerSeriesAt.hasDerivAt, HasFPowerSeriesAt.eventually_hasSum_sub, HasFDerivAt.linear_multilinear_comp, FormalMultilinearSeries.compAlongComposition_apply, le_opNorm_mul_prod_of_le, analyticOnNhd, analyticWithinAt_uncurry_of_linear, HasFPowerSeriesOnBall.eventually_hasSum_sub, opNNNorm_le_iff, ofSubsingleton_apply_apply, continuousMultilinearCurryRightEquiv_symm_apply', iteratedFDerivWithin_two_apply, bound, VectorFourier.fourierPowSMulRight_apply, NormedSpace.expSeries_eq_expSeries_rat, ContinuousAlternatingMap.coe_toContinuousMultilinearMap, map_sum_finset, uncurry0_apply, le_of_opNorm_le, FormalMultilinearSeries.comp_rightInv, curryLeft_apply, OrderedFinpartition.applyOrderedFinpartition_update_left, DifferentiableWithinAt.continuousMultilinear_apply_const, analyticWithinAt, InnerProductSpace.laplacian_eq_iteratedFDeriv_orthonormalBasis, toUniformOnFun_toFun, coe_restrictScalars, HasFPowerSeriesOnBall.iteratedFDeriv_eq_sum_of_completeSpace, ContinuousLinearMap.analyticOn_uncurry_of_multilinear, VectorFourier.fourierIntegral_continuousMultilinearMap_apply, HasFPowerSeriesOnBall.image_sub_sub_deriv_le, smulRight_apply, iteratedFDerivWithin_clm_apply_const_apply, currySum_apply, continuousMultilinearCurryRightEquiv_apply', compAlongComposition_apply, ContDiffWithinAt.iteratedFDerivWithin_comp_perm, Real.fourier_continuousMultilinearMap_apply, norm_map_insertNth_le, HasFPowerSeriesAt.coeff_zero, HasFPowerSeriesOnBall.hasSum_sub, iteratedFDeriv_two_apply, iteratedDerivWithin_vcomp_eq_sum_orderedFinpartition, continuousMultilinearCurryLeftEquiv_symm_apply, zero_apply, FormalMultilinearSeries.applyComposition_update, ext_iff, iteratedFDeriv_apply_eq_iteratedDeriv_mul_prod, continuousMultilinearCurryFin1_symm_apply, Quaternion.hasSum_expSeries_of_imaginary, opNorm_le_iff, iteratedDeriv_vcomp_two, map_zero, norm_map_cons_le, continuousMapClass, FormalMultilinearSeries.derivSeries_apply_diag, iteratedFDeriv_clm_apply_const_apply, HasFPowerSeriesWithinOnBall.hasSum, fderivCompContinuousLinearMap_apply, curryFinFinset_symm_apply, FormalMultilinearSeries.id_apply_one, apply_zero_uncurry0, iteratedFDerivWithin_apply_eq_iteratedDerivWithin_mul_prod, FormalMultilinearSeries.summable, FormalMultilinearSeries.compContinuousLinearMap_apply, FormalMultilinearSeries.summable_norm_apply, FormalMultilinearSeries.compAlongOrderedFinpartition_apply, le_opNorm_mul_pow_of_le, le_opNNNorm, FormalMultilinearSeries.comp_rightInv_aux2, FormalMultilinearSeries.changeOriginSeriesTerm_changeOriginIndexEquiv_symm, continuousMultilinearCurryRightEquiv_apply, analyticOnNhd_uncurry_of_linear, HasFPowerSeriesWithinOnBall.iteratedFDerivWithin_eq_sum, ContinuousLinearMap.analyticAt_uncurry_of_multilinear, HasStrictFDerivAt.continuousMultilinearMap_apply, curryFinFinset_apply, OrderedFinpartition.applyOrderedFinpartition_update_right, ContinuousLinearMap.norm_map_removeNth_le, hasStrictFDerivAt_uncurry, Real.fourierIntegral_continuousMultilinearMap_apply', compContinuousLinearMapContinuousMultilinear_apply_apply, norm_image_sub_le', iteratedFDerivWithin_zero_apply, NormedSpace.expSeries_hasSum_exp_of_mem_ball, prod_apply, FormalMultilinearSeries.applyComposition_ones, fin0_apply_norm, HasFPowerSeriesOnBall.iteratedFDeriv_eq_sum, TrivSqZeroExt.snd_expSeries_of_smul_comm, IsSymmSndFDerivWithinAt.iteratedFDerivWithin_cons, ContinuousLinearMap.continuousAt_uncurry_of_multilinear, PiTensorProduct.mapLMultilinear_toFun_apply, iteratedDerivWithin_vcomp_three, iteratedFDeriv_succ_apply_left, HasFDerivAt.continuousMultilinearMap_apply, continuousMultilinearCurryFin1_apply
instAdd πŸ“–CompOp
11 mathmath: toMultilinearMap_add, iteratedFDeriv_add_apply, iteratedFDeriv_add, iteratedFDerivWithin_add_apply, opNorm_add_le, add_apply, FormalMultilinearSeries.add_apply, ContinuousAlternatingMap.toContinuousMultilinearMap_add, add_prod_add, iteratedFDerivWithin_add_apply', iteratedFDeriv_add_apply'
instAddCommGroup πŸ“–CompOp
42 mathmath: fderiv_iteratedFDeriv, ContinuousAlternatingMap.hasStrictFDerivAt_toContinuousMultilinearMap_comp_iff, hasFTaylorSeriesUpToOn_top_iff_right, iteratedFDerivWithin_succ_eq_comp_left, contDiffOn_iff_continuousOn_differentiableOn, OrderedFinpartition.norm_compAlongOrderedFinpartitionL_apply_le, norm_smulRightL_le, VectorFourier.fourierPowSMulRight_eq_comp, contDiffOn_nat_iff_continuousOn_differentiableOn, ContDiff.differentiable_iteratedFDeriv, instIsUniformAddGroup, hasFTaylorSeriesUpToOn_top_iff', contDiff_iff_continuous_differentiable, hasFTaylorSeriesUpToOn_succ_iff_right, ContinuousLinearMap.coe_flipMultilinearEquiv, hasFTaylorSeriesUpTo_top_iff', fderivWithin_iteratedFDerivWithin, hasFTaylorSeriesUpTo_succ_nat_iff_right, hasFTaylorSeriesUpToOn_succ_nat_iff_right, PiTensorProduct.dualSeminorms_bounded, iteratedFDerivWithin_succ_apply_left, HasFTaylorSeriesUpToOn.fderivWithin, PiTensorProduct.injectiveSeminorm_apply, norm_fderiv_iteratedFDeriv, norm_fderivWithin_iteratedFDerivWithin, OrderedFinpartition.compAlongOrderedFinpartitionL_apply, ContDiffWithinAt.differentiableWithinAt_iteratedFDerivWithin, contDiff_nat_iff_continuous_differentiable, hasStrictFDerivAt_compContinuousLinearMap, hasFTaylorSeriesUpToOn_succ_iff_left, ContinuousLinearMap.coe_symm_flipMultilinearEquiv, smulRightL_apply, iteratedFDeriv_succ_eq_comp_left, ContDiffAt.differentiableAt_iteratedFDeriv, HasFTaylorSeriesUpTo.fderiv, ContDiffOn.differentiableOn_iteratedFDerivWithin, instIsTopologicalAddGroup, hasStrictFDerivAt_uncurry, compContinuousLinearMapContinuousMultilinear_apply_apply, PiTensorProduct.injectiveSeminorm_def, OrderedFinpartition.norm_compAlongOrderedFinpartitionL_le, iteratedFDeriv_succ_apply_left
instDistribMulAction πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instModule πŸ“–CompOp
199 mathmath: fderiv_iteratedFDeriv, FormalMultilinearSeries.changeOriginSeries_sum_eq_partialSum_of_finite, norm_iteratedFDerivComponent_le, ContinuousAlternatingMap.hasStrictFDerivAt_toContinuousMultilinearMap_comp_iff, hasFTaylorSeriesUpToOn_top_iff_right, ContDiffMapSupportedIn.iteratedFDerivLM_apply, ContDiffMapSupportedIn.structureMapCLM_eq_of_scalars, FormalMultilinearSeries.changeOriginSeriesTerm_apply, changeOrigin_toFormalMultilinearSeries, ContDiffMapSupportedIn.structureMapCLM_apply, iteratedFDerivWithin_succ_eq_comp_right, HasFTaylorSeriesUpTo.hasFDerivAt, MultilinearMap.mkContinuousMultilinear_apply, norm_compContinuousLinearMapLRight_le, FormalMultilinearSeries.changeOriginSeries_summable_aux₃, piLinearEquiv_symm_apply, HasFPowerSeriesWithinAt.hasStrictFDerivWithinAt, HasFDerivWithinAt.linear_multilinear_comp, iteratedFDerivWithin_succ_eq_comp_left, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_apply_of_gt, contDiffOn_iff_continuousOn_differentiableOn, PiTensorProduct.toDualContinuousMultilinearMap_apply_apply, OrderedFinpartition.norm_compAlongOrderedFinpartitionL_apply_le, HasFTaylorSeriesUpToOn.zero_eq', norm_smulRightL_le, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_eq_of_scalars, ContinuousLinearMap.cpolynomialOn_uncurry_of_multilinear, VectorFourier.fourierPowSMulRight_eq_comp, ContinuousLinearMap.hasFiniteFPowerSeriesOnBall_uncurry_of_multilinear, ContinuousLinearMap.flipMultilinear_apply_apply, uncurrySum_apply, FormalMultilinearSeries.nnnorm_changeOriginSeries_le_tsum, HasFTaylorSeriesUpToOn.eventually_hasFDerivAt, curryFinFinset_symm_apply_const, HasFPowerSeriesOnBall.fderiv_eq, HasFTaylorSeriesUpToOn.hasFDerivWithinAt, curryLeft_norm, isBoundedBilinearMap_compMultilinear, ContDiffMapSupportedIn.structureMapLM_eq_of_scalars, HasFPowerSeriesWithinAt.fderivWithin_eq, restrictScalarsLinear_apply, contDiffOn_nat_iff_continuousOn_differentiableOn, ContDiff.differentiable_iteratedFDeriv, ContDiffMapSupportedIn.uniformSpace_eq_iInf, PiTensorProduct.liftIsometry_tprodL, ContDiffMapSupportedIn.continuous_iff_comp_withOrder, ContinuousLinearMap.analyticWithinAt_uncurry_of_multilinear, FormalMultilinearSeries.iteratedFDerivSeries_eq_zero, iteratedFDerivWithin_eq_equiv_comp, ContDiffMapSupportedIn.structureMapCLM_zero_apply, ofSubsingletonβ‚—α΅’_symm_apply, continuousMultilinearCurryFin0_symm_apply, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_apply, continuousMultilinearCurryRightEquiv_symm_apply, FormalMultilinearSeries.nnnorm_changeOriginSeriesTerm_apply_le, hasFTaylorSeriesUpToOn_top_iff', ContinuousAlternatingMap.toContinuousMultilinearMapLI_apply, ContinuousLinearMap.cpolyomialOn_uncurry_of_multilinear, OrderedFinpartition.compAlongOrderedFinpartitionβ‚—_apply_apply, contDiff_iff_continuous_differentiable, prodL_apply, hasFTaylorSeriesUpToOn_succ_iff_right, ContinuousLinearMap.coe_flipMultilinearEquiv, PiTensorProduct.liftEquiv_symm_apply, FormalMultilinearSeries.nnnorm_changeOriginSeries_apply_le_tsum, ContDiffMapSupportedIn.structureMapLM_apply_withOrder, PiTensorProduct.liftEquiv_apply, hasFTaylorSeriesUpTo_top_iff', fderivWithin_iteratedFDerivWithin, MultilinearMap.mkContinuousLinear_norm_le, piLinearEquiv_apply, ContinuousLinearMap.uncurryLeft_apply, curryFinFinset_apply_const, compContinuousLinearMapLRight_apply, ContinuousLinearMap.continuousMultilinearMapOption_apply_eq_self, apply_apply, flipLinear_apply_apply, hasFTaylorSeriesUpTo_succ_nat_iff_right, ContinuousLinearMap.cpolynomialAt_uncurry_of_multilinear, iteratedFDeriv_eq_equiv_comp, hasFTaylorSeriesUpToOn_succ_nat_iff_right, ContinuousAlternatingMap.toContinuousMultilinearMapLinear_apply, ContinuousAlternatingMap.toContinuousMultilinearMapCLM_apply, ContinuousLinearMap.continuousWithinAt_uncurry_of_multilinear, HasFPowerSeriesAt.fderiv_eq, continuousMultilinearCurryFin0_apply, PiTensorProduct.dualSeminorms_bounded, curryMidEquiv_apply, iteratedFDerivWithin_succ_apply_left, HasFTaylorSeriesUpToOn.fderivWithin, ContinuousLinearMap.norm_map_tail_le, PiTensorProduct.injectiveSeminorm_apply, norm_fderiv_iteratedFDeriv, HasFTaylorSeriesUpToOn.hasFDerivAt, iteratedDeriv_eq_equiv_comp, MultilinearMap.mkContinuousLinear_norm_le', norm_fderivWithin_iteratedFDerivWithin, HasFTaylorSeriesUpToOn.shift_of_succ, ContinuousLinearEquiv.continuousMultilinearMapCongrRight_symm, ContinuousAlternatingMap.toContinuousMultilinearMapCLM_comp_fderivCompContinuousLinearMap, ContinuousLinearMap.norm_uncurryMid, ContinuousLinearMap.uncurryLeft_norm, ContinuousLinearMap.continuous_uncurry_of_multilinear, ContDiffMapSupportedIn.isUniformEmbedding_pi_structureMapCLM, MultilinearMap.mkContinuousMultilinear_norm_le', curryFinFinset_symm_apply_piecewise_const, ContinuousAlternatingMap.toContinuousMultilinearMap_curryLeft, FormalMultilinearSeries.leftInv_coeff_one, ContinuousLinearMap.analyticOnNhd_uncurry_of_multilinear, OrderedFinpartition.compAlongOrderedFinpartitionL_apply, HasFPowerSeriesAt.hasFDerivAt, ContinuousLinearMap.uncurryMid_apply, ContDiffMapSupportedIn.structureMapCLM_apply_withOrder, PiTensorProduct.liftIsometry_comp_mapL, continuousMultilinearCurryLeftEquiv_apply, PiTensorProduct.liftIsometry_symm_apply, iteratedFDerivComponent_apply, ContDiffWithinAt.differentiableWithinAt_iteratedFDerivWithin, iteratedFDeriv_succ_eq_comp_right, changeOriginSeries_support, ContDiffMapSupportedIn.seminorm_apply, ContinuousLinearMap.continuousOn_uncurry_of_multilinear, HasFPowerSeriesWithinOnBall.fderivWithin_eq, piβ‚—α΅’_symm_apply, HasFTaylorSeriesUpToOn.hasStrictFDerivAt, contDiff_nat_iff_continuous_differentiable, MultilinearMap.mkContinuousMultilinear_norm_le, hasStrictFDerivAt_compContinuousLinearMap, HasFPowerSeriesOnBall.hasFDerivAt, curryMid_apply, PiTensorProduct.toDualContinuousMultilinearMap_le_projectiveSeminorm, ContinuousLinearMap.hasFDerivAt_uncurry_of_multilinear, HasFDerivAt.linear_multilinear_comp, ContinuousLinearEquiv.continuousMultilinearMapCongrLeft_apply, compContinuousLinearMapL_apply, PiTensorProduct.liftIsometry_apply_apply, prodL_symm_apply, iteratedFDeriv_zero_eq_comp, hasFTaylorSeriesUpToOn_succ_iff_left, continuousMultilinearCurryRightEquiv_symm_apply', ContDiffMapSupportedIn.structureMapLM_zero_injective, iteratedDerivWithin_eq_equiv_comp, curryLeft_apply, iteratedFDerivWithin_zero_eq_comp, ContinuousLinearMap.analyticOn_uncurry_of_multilinear, HasFiniteFPowerSeriesOnBall.hasStrictFDerivAt, ContinuousLinearMap.coe_symm_flipMultilinearEquiv, currySum_apply, continuousMultilinearCurryRightEquiv_apply', HasFiniteFPowerSeriesOnBall.hasFDerivAt, ContinuousLinearEquiv.continuousMultilinearMapCongrRight_apply, FormalMultilinearSeries.changeOriginSeries_finite_of_finite, ContDiffMapSupportedIn.continuous_iff_comp, continuousMultilinearCurryLeftEquiv_symm_apply, smulRightL_apply, iteratedFDeriv_succ_eq_comp_left, ContDiffMapSupportedIn.structureMapCLM_zero_injective, piβ‚—α΅’_apply, ofSubsingletonβ‚—α΅’_apply, continuousMultilinearCurryFin1_symm_apply, ContDiffAt.differentiableAt_iteratedFDeriv, ContinuousLinearEquiv.continuousMultilinearMapCongrLeft_symm, FormalMultilinearSeries.norm_changeOriginSeriesTerm, fderivCompContinuousLinearMap_apply, HasFTaylorSeriesUpTo.zero_eq', curryFinFinset_symm_apply, HasFTaylorSeriesUpTo.fderiv, HasFiniteFPowerSeriesOnBall.fderiv_eq, HasFPowerSeriesAt.hasStrictFDerivAt, isBoundedLinearMap_continuousMultilinearMap_comp_linear, FormalMultilinearSeries.nnnorm_changeOriginSeriesTerm, ContDiffMapSupportedIn.iteratedFDerivLM_eq_of_scalars, ContDiffOn.differentiableOn_iteratedFDerivWithin, norm_compContinuousLinearMapL_le, FormalMultilinearSeries.changeOriginSeriesTerm_changeOriginIndexEquiv_symm, continuousMultilinearCurryRightEquiv_apply, ContDiffMapSupportedIn.structureMapLM_zero_apply, HasFPowerSeriesWithinAt.hasFDerivWithinAt, FormalMultilinearSeries.rightInv_coeff_one, ContinuousLinearMap.analyticAt_uncurry_of_multilinear, ContinuousLinearMap.fpowerSeries_apply_one, toMultilinearMapLinear_apply, curryFinFinset_apply, FormalMultilinearSeries.changeOriginSeriesTerm_bound, ContinuousLinearMap.norm_map_removeNth_le, hasStrictFDerivAt_uncurry, compContinuousLinearMapContinuousMultilinear_apply_apply, HasFPowerSeriesWithinOnBall.hasFDerivWithinAt, ContDiffMapSupportedIn.structureMapLM_apply, isBoundedLinearMap_prod_multilinear, ContinuousLinearMap.fpowerSeriesBilinear_apply_one, norm_curryMid, PiTensorProduct.injectiveSeminorm_def, OrderedFinpartition.norm_compAlongOrderedFinpartitionL_le, ContinuousLinearMap.continuousAt_uncurry_of_multilinear, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_apply_of_le, curryMidEquiv_symm_apply, iteratedFDeriv_succ_apply_left, continuousMultilinearCurryFin1_apply
instMulAction πŸ“–CompOpβ€”
instNeg πŸ“–CompOp
7 mathmath: iteratedFDerivWithin_neg_apply, neg_apply, iteratedFDeriv_neg_apply, FormalMultilinearSeries.neg_apply, neg_prod_neg, FormalMultilinearSeries.rightInv_coeff, iteratedFDeriv_neg
instSMul πŸ“–CompOp
18 mathmath: FormalMultilinearSeries.smul_apply, VectorFourier.fourierPowSMulRight_eq_comp, opNorm_smul_le, iteratedFDerivWithin_const_smul_apply, iteratedFDeriv_const_smul_apply, iteratedFDeriv_const_smul_apply', smul_prod_smul, instContinuousConstSMul, instIsBoundedSMul, instIsScalarTower, smul_apply, alternatization_apply_toContinuousMultilinearMap, instUniformContinuousConstSMul, instContinuousSMul, instSMulCommClass, instIsCentralScalar, ContinuousAlternatingMap.toContinuousMultilinearMap_smul, toMultilinearMap_smul
instSub πŸ“–CompOp
6 mathmath: ContDiffPointwiseHolderAt.isBigO, contDiffPointwiseHolderAt_iff, sub_apply, FormalMultilinearSeries.sub_apply, OrderedFinpartition.norm_compAlongOrderedFinpartition_sub_compAlongOrderedFinpartition_le, sub_prod_sub
instZero πŸ“–CompOp
42 mathmath: FormalMultilinearSeries.removeZero_coeff_zero, FormalMultilinearSeries.ofScalars_eq_zero_of_scalar_zero, opNorm_zero_iff, HasFiniteFPowerSeriesAt.finite, iteratedFDerivWithin_succ_const, FormalMultilinearSeries.ofScalars_eq_zero, iteratedFDeriv_succ_const, FormalMultilinearSeries.coeff_eq_zero, hasBasis_nhds_zero, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_apply, ContinuousLinearMap.fpowerSeriesBilinear_apply_add_three, ContinuousAlternatingMap.toContinuousMultilinearMap_zero, ContinuousLinearMap.fpowerSeries_apply_add_two, opNorm_zero, ContDiffMapSupportedIn.structureMapLM_apply_withOrder, instIsBoundedSMul, constFormalMultilinearSeries_apply_of_nonzero, toMultilinearMap_zero, ContDiffMapSupportedIn.iteratedFDeriv_zero_on_compl, mkPiRing_zero, support_iteratedFDeriv_subset, ContDiffMapSupportedIn.structureMapCLM_apply_withOrder, HasCompactSupport.iteratedFDeriv, changeOriginSeries_support, tsupport_iteratedFDeriv_subset, FormalMultilinearSeries.apply_eq_zero_of_lt_order, hasBasis_nhds_zero_of_basis, iteratedFDeriv_zero_fun, ordinaryHypergeometricSeries_eq_zero_iff, HasFiniteFPowerSeriesOnBall.finite, FormalMultilinearSeries.id_apply_of_one_lt, FormalMultilinearSeries.order_eq_find, iteratedFDerivWithin_const_of_ne, iteratedFDerivWithin_zero_fun, zero_apply, mkPiRing_eq_zero_iff, ordinaryHypergeometricSeries_eq_zero_of_neg_nat, FormalMultilinearSeries.zero_apply, zero_prod_zero, FormalMultilinearSeries.comp_rightInv_aux2, constFormalMultilinearSeries_apply_succ, iteratedFDeriv_const_of_ne
linearDeriv πŸ“–CompOp
8 mathmath: changeOrigin_toFormalMultilinearSeries, linearDeriv_apply, ContinuousAlternatingMap.hasStrictFDerivAt, hasStrictFDerivAt, hasFDerivAt, ContinuousAlternatingMap.hasFDerivWithinAt, ContinuousAlternatingMap.hasFDerivAt, hasStrictFDerivAt_uncurry
mkPiAlgebra πŸ“–CompOp
6 mathmath: mkPiAlgebra_apply, norm_mkPiAlgebra_le, VectorFourier.fourierPowSMulRight_eq_comp, mkPiAlgebra_eq_mkPiAlgebraFin, norm_mkPiAlgebra, norm_mkPiAlgebra_of_empty
mkPiAlgebraFin πŸ“–CompOp
8 mathmath: mkPiAlgebraFin_apply, norm_mkPiAlgebraFin_zero, norm_mkPiAlgebraFin_le_of_pos, mkPiAlgebra_eq_mkPiAlgebraFin, norm_mkPiAlgebraFin_le, norm_mkPiAlgebraFin_succ_le, FormalMultilinearSeries.ofScalars_norm_eq_mul, norm_mkPiAlgebraFin
mkPiRing πŸ“–CompOp
8 mathmath: norm_mkPiRing, mkPiRing_apply_one_eq_self, mkPiRing_apply, spectrum.hasFPowerSeriesOnBall_inverse_one_sub_smul, FormalMultilinearSeries.mkPiRing_coeff_eq, mkPiRing_zero, mkPiRing_eq_iff, mkPiRing_eq_zero_iff
ofSubsingleton πŸ“–CompOp
12 mathmath: ContinuousAlternatingMap.ofSubsingleton_apply_toContinuousMultilinearMap, ofSubsingleton_symm_apply_apply, ofSubsingletonβ‚—α΅’_symm_apply, norm_ofSubsingleton_id_le, nnnorm_ofSubsingleton, ofSubsingleton_apply_toMultilinearMap, ofSubsingleton_apply_apply, nnnorm_ofSubsingleton_id_le, nnnorm_ofSubsingleton_id, norm_ofSubsingleton, ofSubsingletonβ‚—α΅’_apply, norm_ofSubsingleton_id
pi πŸ“–CompOp
8 mathmath: piLinearEquiv_apply, pi_apply, opNorm_pi, piEquiv_apply, opNNNorm_pi, coe_pi, piβ‚—α΅’_apply, hasFTaylorSeriesUpToOn_pi
piEquiv πŸ“–CompOp
2 mathmath: piEquiv_apply, piEquiv_symm_apply
piLinearEquiv πŸ“–CompOp
2 mathmath: piLinearEquiv_symm_apply, piLinearEquiv_apply
prod πŸ“–CompOp
14 mathmath: eq_prod_iff, smul_prod_smul, iteratedFDerivWithin_prodMk, prodEquiv_apply, opNNNorm_prod, HasFTaylorSeriesUpToOn.prodMk, iteratedFDeriv_prodMk, neg_prod_neg, sub_prod_sub, zero_prod_zero, opNorm_prod, isBoundedLinearMap_prod_multilinear, prod_apply, add_prod_add
prodEquiv πŸ“–CompOp
6 mathmath: prodEquiv_symm_apply_fst, prodL_apply, prodEquiv_symm_apply, prodEquiv_apply, prodEquiv_symm_apply_snd, prodL_symm_apply
restrictScalars πŸ“–CompOp
11 mathmath: isEmbedding_restrictScalars, restrictScalarsLinear_apply, ContDiffWithinAt.restrictScalars_iteratedFDerivWithin_eventuallyEq, uniformContinuous_restrictScalars, norm_restrictScalars, ContDiffAt.restrictScalars_iteratedFDeriv_eventuallyEq, ContDiffAt.restrictScalars_iteratedFDeriv, coe_restrictScalars, fderivWithin_restrictScalars_comp, isUniformEmbedding_restrictScalars, continuous_restrictScalars
smulRight πŸ“–CompOp
6 mathmath: ContinuousAlternatingMap.smulRight_toContinuousMultilinearMap, smulRight_toMultilinearMap, smulRight_apply, smulRightL_apply, nnnorm_smulRight, norm_smulRight
toContinuousLinearMap πŸ“–CompOp
9 mathmath: HasFDerivWithinAt.continuousMultilinearMap_apply, HasFDerivWithinAt.linear_multilinear_comp, HasFDerivAt.multilinear_comp, toContinuousLinearMap_apply, HasFDerivWithinAt.multilinear_comp, ContinuousLinearMap.hasFDerivAt_uncurry_of_multilinear, HasFDerivAt.linear_multilinear_comp, HasStrictFDerivAt.continuousMultilinearMap_apply, HasFDerivAt.continuousMultilinearMap_apply
toMultilinearMap πŸ“–CompOp
22 mathmath: coe_coe, toMultilinearMap_add, domDomCongr_toMultilinearMap, PiTensorProduct.toDualContinuousMultilinearMap_apply_apply, constOfIsEmpty_toMultilinearMap, PiTensorProduct.norm_eval_le_injectiveSeminorm, PiTensorProduct.liftEquiv_apply, ContinuousAlternatingMap.map_eq_zero_of_eq', toMultilinearMap_zero, cont, PiTensorProduct.mapLMultilinear_apply_apply, toMultilinearMap_injective, codRestrict_toMultilinearMap, ofSubsingleton_apply_toMultilinearMap, PiTensorProduct.liftIsometry_apply_apply, alternatization_apply_toAlternatingMap, PiTensorProduct.norm_eval_le_projectiveSeminorm, smulRight_toMultilinearMap, toMultilinearMap_smul, toMultilinearMapLinear_apply, PiTensorProduct.mapLMultilinear_toFun_apply, PiTensorProduct.tprodL_coe
toMultilinearMapLinear πŸ“–CompOp
1 mathmath: toMultilinearMapLinear_apply

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”
add_prod_add πŸ“–mathematicalβ€”prod
ContinuousMultilinearMap
instAdd
Prod.instAddCommMonoid
Prod.instModule
instTopologicalSpaceProd
Prod.continuousAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
β€”β€”
codRestrict_apply_coe πŸ“–mathematicalSubmodule
SetLike.instMembership
Submodule.setLike
DFunLike.coe
ContinuousMultilinearMap
funLike
Submodule.addCommMonoid
Submodule.module
instTopologicalSpaceSubtype
codRestrict
β€”β€”
codRestrict_toMultilinearMap πŸ“–mathematicalSubmodule
SetLike.instMembership
Submodule.setLike
DFunLike.coe
ContinuousMultilinearMap
funLike
toMultilinearMap
Submodule.addCommMonoid
Submodule.module
instTopologicalSpaceSubtype
codRestrict
MultilinearMap.codRestrict
β€”β€”
coe_coe πŸ“–mathematicalβ€”DFunLike.coe
MultilinearMap
MultilinearMap.instFunLikeForall
toMultilinearMap
ContinuousMultilinearMap
funLike
β€”β€”
coe_continuous πŸ“–mathematicalβ€”Continuous
Pi.topologicalSpace
DFunLike.coe
ContinuousMultilinearMap
funLike
β€”cont
coe_pi πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
Pi.addCommMonoid
Pi.module
Pi.topologicalSpace
funLike
pi
β€”β€”
coe_restrictScalars πŸ“–mathematicalIsScalarTower
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
DFunLike.coe
ContinuousMultilinearMap
funLike
restrictScalars
β€”β€”
compContinuousLinearMap_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
compContinuousLinearMap
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap.funLike
β€”β€”
cons_add πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
Fin.cons
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”MultilinearMap.cons_add
cons_smul πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
Fin.cons
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”MultilinearMap.cons_smul
constOfIsEmpty_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
constOfIsEmpty
β€”β€”
constOfIsEmpty_toMultilinearMap πŸ“–mathematicalβ€”toMultilinearMap
constOfIsEmpty
MultilinearMap.constOfIsEmpty
β€”β€”
cont πŸ“–mathematicalβ€”Continuous
Pi.topologicalSpace
MultilinearMap.toFun
toMultilinearMap
β€”β€”
continuousMapClass πŸ“–mathematicalβ€”ContinuousMapClass
ContinuousMultilinearMap
Pi.topologicalSpace
funLike
β€”cont
domDomCongrEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ContinuousMultilinearMap
EquivLike.toFunLike
Equiv.instEquivLike
domDomCongrEquiv
domDomCongr
β€”β€”
domDomCongrEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ContinuousMultilinearMap
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
domDomCongrEquiv
domDomCongr
β€”β€”
domDomCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
domDomCongr
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”β€”
domDomCongr_toMultilinearMap πŸ“–mathematicalβ€”toMultilinearMap
domDomCongr
MultilinearMap.domDomCongr
β€”β€”
eq_prod_iff πŸ“–mathematicalβ€”prod
ContinuousLinearMap.compContinuousMultilinearMap
Prod.instAddCommMonoid
Prod.instModule
instTopologicalSpaceProd
ContinuousLinearMap.fst
ContinuousLinearMap.snd
β€”prod_ext_iff
ext πŸ“–β€”DFunLike.coe
ContinuousMultilinearMap
funLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
β€”ext
ext_ring πŸ“–β€”DFunLike.coe
ContinuousMultilinearMap
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”toMultilinearMap_injective
MultilinearMap.ext_ring
ext_ring_iff πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”ext_ring
instIsCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
ContinuousMultilinearMap
instSMul
MulOpposite
ContinuousConstSMul.op
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
SMulCommClass.op_right
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”ContinuousConstSMul.op
SMulCommClass.op_right
ext
IsCentralScalar.op_smul_eq_smul
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
ContinuousMultilinearMap
instSMul
β€”ext
smul_assoc
instSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
ContinuousMultilinearMap
instSMul
β€”ext
SMulCommClass.smul_comm
linearDeriv_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.topologicalSpace
Pi.addCommMonoid
Pi.module
ContinuousLinearMap.funLike
linearDeriv
Finset.sum
Finset.univ
ContinuousMultilinearMap
funLike
Function.update
β€”Finset.sum_congr
ContinuousLinearMap.coe_sum'
Finset.sum_apply
map_add_univ πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Finset.sum
Finset
Finset.univ
Finset.fintype
Finset.piecewise
Finset.decidableMem
β€”MultilinearMap.map_add_univ
map_coord_zero πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
ContinuousMultilinearMap
funLike
β€”MultilinearMap.map_coord_zero
map_piecewise_add πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
Finset.piecewise
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Finset.decidableMem
Finset.sum
Finset
Finset.powerset
β€”MultilinearMap.map_piecewise_add
map_piecewise_smul πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
CommSemiring.toSemiring
funLike
Finset.piecewise
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Finset.decidableMem
Finset.prod
CommSemiring.toCommMonoid
β€”MultilinearMap.map_piecewise_smul
map_smul_univ πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
CommSemiring.toSemiring
funLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Finset.prod
CommSemiring.toCommMonoid
Finset.univ
β€”MultilinearMap.map_smul_univ
map_sum πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
Finset.sum
Finset.univ
Pi.instFintype
β€”MultilinearMap.map_sum
map_sum_finset πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
Finset.sum
Fintype.piFinset
β€”MultilinearMap.map_sum_finset
map_update_add πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
Function.update
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”MultilinearMap.map_update_add'
map_update_smul πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
Function.update
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”MultilinearMap.map_update_smul'
map_update_sub πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
Ring.toSemiring
AddCommGroup.toAddCommMonoid
funLike
Function.update
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”MultilinearMap.map_update_sub
map_zero πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”MultilinearMap.map_zero
mkPiAlgebraFin_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
funLike
mkPiAlgebraFin
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
mkPiAlgebra_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
funLike
mkPiAlgebra
Finset.prod
CommSemiring.toCommMonoid
Finset.univ
β€”β€”
mkPiAlgebra_eq_mkPiAlgebraFin πŸ“–mathematicalβ€”mkPiAlgebra
Fin.fintype
mkPiAlgebraFin
CommSemiring.toSemiring
β€”ext
List.prod_ofFn
mkPiRing_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
funLike
mkPiRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Finset.prod
CommRing.toCommMonoid
Finset.univ
β€”β€”
mkPiRing_apply_one_eq_self πŸ“–mathematicalβ€”mkPiRing
DFunLike.coe
ContinuousMultilinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
funLike
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”toMultilinearMap_injective
MultilinearMap.mkPiRing_apply_one_eq_self
mkPiRing_eq_iff πŸ“–mathematicalβ€”mkPiRingβ€”toMultilinearMap_injective
MultilinearMap.mkPiRing_eq_iff
mkPiRing_eq_zero_iff πŸ“–mathematicalβ€”mkPiRing
ContinuousMultilinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”mkPiRing_zero
mkPiRing_eq_iff
mkPiRing_zero πŸ“–mathematicalβ€”mkPiRing
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
ContinuousMultilinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
instZero
β€”ext_ring
Finite.of_fintype
mkPiRing_apply
smul_zero
zero_apply
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
Ring.toSemiring
AddCommGroup.toAddCommMonoid
funLike
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
neg_prod_neg πŸ“–mathematicalβ€”prod
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ContinuousMultilinearMap
instNeg
Prod.instAddCommMonoid
Prod.instModule
instTopologicalSpaceProd
Prod.instAddCommGroup
Prod.instIsTopologicalAddGroup
AddCommGroup.toAddGroup
β€”β€”
ofSubsingleton_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
Equiv
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
EquivLike.toFunLike
Equiv.instEquivLike
ofSubsingleton
ContinuousLinearMap.funLike
β€”β€”
ofSubsingleton_apply_toMultilinearMap πŸ“–mathematicalβ€”toMultilinearMap
DFunLike.coe
Equiv
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
ContinuousMultilinearMap
EquivLike.toFunLike
Equiv.instEquivLike
ofSubsingleton
LinearMap
MultilinearMap
MultilinearMap.ofSubsingleton
ContinuousLinearMap.toLinearMap
β€”β€”
ofSubsingleton_symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap.funLike
Equiv
ContinuousMultilinearMap
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
ofSubsingleton
funLike
β€”β€”
piEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ContinuousMultilinearMap
Pi.addCommMonoid
Pi.module
Pi.topologicalSpace
EquivLike.toFunLike
Equiv.instEquivLike
piEquiv
pi
β€”β€”
piEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ContinuousMultilinearMap
Pi.addCommMonoid
Pi.module
Pi.topologicalSpace
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
piEquiv
ContinuousLinearMap.compContinuousMultilinearMap
ContinuousLinearMap.proj
β€”β€”
piLinearEquiv_apply πŸ“–mathematicalContinuousAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SMulCommClass
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
ContinuousConstSMul
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
ContinuousMultilinearMap
Pi.addCommMonoid
Pi.module
Pi.topologicalSpace
addCommMonoid
Pi.continuousAdd
AddSemigroup.toAdd
instModule
instContinuousConstSMulForall
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Pi.smulCommClass
EquivLike.toFunLike
LinearEquiv.instEquivLike
piLinearEquiv
pi
β€”RingHomInvPair.ids
Pi.continuousAdd
instContinuousConstSMulForall
Pi.smulCommClass
piLinearEquiv_symm_apply πŸ“–mathematicalContinuousAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SMulCommClass
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
ContinuousConstSMul
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
ContinuousMultilinearMap
Pi.addCommMonoid
Pi.module
Pi.topologicalSpace
addCommMonoid
Pi.continuousAdd
AddSemigroup.toAdd
instModule
instContinuousConstSMulForall
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Pi.smulCommClass
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
piLinearEquiv
ContinuousLinearMap.compContinuousMultilinearMap
ContinuousLinearMap.proj
β€”RingHomInvPair.ids
Pi.continuousAdd
instContinuousConstSMulForall
Pi.smulCommClass
pi_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
Pi.addCommMonoid
Pi.module
Pi.topologicalSpace
funLike
pi
β€”β€”
prodEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ContinuousMultilinearMap
Prod.instAddCommMonoid
Prod.instModule
instTopologicalSpaceProd
EquivLike.toFunLike
Equiv.instEquivLike
prodEquiv
prod
β€”β€”
prodEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ContinuousMultilinearMap
Prod.instAddCommMonoid
Prod.instModule
instTopologicalSpaceProd
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
prodEquiv
ContinuousLinearMap.compContinuousMultilinearMap
ContinuousLinearMap.fst
ContinuousLinearMap.snd
β€”β€”
prodEquiv_symm_apply_fst πŸ“–mathematicalβ€”ContinuousMultilinearMap
DFunLike.coe
Equiv
Prod.instAddCommMonoid
Prod.instModule
instTopologicalSpaceProd
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
prodEquiv
ContinuousLinearMap.compContinuousMultilinearMap
ContinuousLinearMap.fst
β€”β€”
prodEquiv_symm_apply_snd πŸ“–mathematicalβ€”ContinuousMultilinearMap
DFunLike.coe
Equiv
Prod.instAddCommMonoid
Prod.instModule
instTopologicalSpaceProd
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
prodEquiv
ContinuousLinearMap.compContinuousMultilinearMap
ContinuousLinearMap.snd
β€”β€”
prod_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
Prod.instAddCommMonoid
Prod.instModule
instTopologicalSpaceProd
funLike
prod
β€”β€”
prod_ext πŸ“–β€”ContinuousLinearMap.compContinuousMultilinearMap
Prod.instAddCommMonoid
Prod.instModule
instTopologicalSpaceProd
ContinuousLinearMap.fst
ContinuousLinearMap.snd
β€”β€”prod_ext_iff
prod_ext_iff πŸ“–mathematicalβ€”ContinuousLinearMap.compContinuousMultilinearMap
Prod.instAddCommMonoid
Prod.instModule
instTopologicalSpaceProd
ContinuousLinearMap.fst
ContinuousLinearMap.snd
β€”prodEquiv_symm_apply
Equiv.apply_eq_iff_eq
smulRight_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
CommSemiring.toSemiring
funLike
smulRight
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
smulRight_toMultilinearMap πŸ“–mathematicalβ€”toMultilinearMap
CommSemiring.toSemiring
smulRight
MultilinearMap.smulRight
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
β€”β€”
smul_prod_smul πŸ“–mathematicalβ€”prod
ContinuousMultilinearMap
instSMul
DistribMulAction.toDistribSMul
AddCommMonoid.toAddMonoid
Prod.instAddCommMonoid
Prod.instModule
instTopologicalSpaceProd
Prod.distribSMul
AddMonoid.toAddZeroClass
Prod.continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
DistribSMul.toSMulZeroClass
Prod.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
Module.toDistribMulAction
β€”β€”
sub_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
Ring.toSemiring
AddCommGroup.toAddCommMonoid
funLike
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
sub_prod_sub πŸ“–mathematicalβ€”prod
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ContinuousMultilinearMap
instSub
Prod.instAddCommMonoid
Prod.instModule
instTopologicalSpaceProd
Prod.instAddCommGroup
Prod.instIsTopologicalAddGroup
AddCommGroup.toAddGroup
β€”β€”
sum_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
Finset.sum
addCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
toContinuousLinearMap_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap.funLike
toContinuousLinearMap
ContinuousMultilinearMap
funLike
Function.update
β€”β€”
toMultilinearMapLinear_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
ContinuousMultilinearMap
MultilinearMap
addCommMonoid
MultilinearMap.addCommMonoid
instModule
MultilinearMap.instModule
LinearMap.instFunLike
toMultilinearMapLinear
toMultilinearMap
β€”β€”
toMultilinearMap_add πŸ“–mathematicalβ€”toMultilinearMap
ContinuousMultilinearMap
instAdd
MultilinearMap
MultilinearMap.instAdd
β€”β€”
toMultilinearMap_injective πŸ“–mathematicalβ€”ContinuousMultilinearMap
MultilinearMap
toMultilinearMap
β€”β€”
toMultilinearMap_smul πŸ“–mathematicalβ€”toMultilinearMap
ContinuousMultilinearMap
instSMul
MultilinearMap
MultilinearMap.instSMul
β€”β€”
toMultilinearMap_zero πŸ“–mathematicalβ€”toMultilinearMap
ContinuousMultilinearMap
instZero
MultilinearMap
MultilinearMap.instZero
β€”β€”
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMultilinearMap
funLike
instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
zero_prod_zero πŸ“–mathematicalβ€”prod
ContinuousMultilinearMap
instZero
Prod.instAddCommMonoid
Prod.instModule
instTopologicalSpaceProd
β€”β€”

ContinuousMultilinearMap.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
Β«term_[Γ—_]β†’L[_]_Β» πŸ“–CompOpβ€”

---

← Back to Index