| Name | Category | Theorems |
addCommMonoid π | CompOp | 136 mathmath: fderiv_iteratedFDeriv, HasFDerivWithinAt.continuousMultilinearMap_apply, FormalMultilinearSeries.changeOriginSeries_sum_eq_partialSum_of_finite, norm_iteratedFDerivComponent_le, ContDiffMapSupportedIn.structureMapCLM_eq_of_scalars, FormalMultilinearSeries.changeOriginSeriesTerm_apply, alternatization_apply_apply, ContDiffMapSupportedIn.structureMapCLM_apply, MultilinearMap.mkContinuousMultilinear_apply, norm_compContinuousLinearMapLRight_le, FormalMultilinearSeries.changeOriginSeries_summable_auxβ, piLinearEquiv_symm_apply, HasFDerivWithinAt.linear_multilinear_comp, iteratedFDerivWithin_succ_eq_comp_left, HasFDerivWithinAt.continuousMultilinearMapCompContinuousLinearMap, PiTensorProduct.toDualContinuousMultilinearMap_apply_apply, OrderedFinpartition.norm_compAlongOrderedFinpartitionL_apply_le, norm_smulRightL_le, HasFDerivAt.continuousMultilinearMapCompContinuousLinearMap, ContinuousLinearMap.cpolynomialOn_uncurry_of_multilinear, VectorFourier.fourierPowSMulRight_eq_comp, ContinuousLinearMap.hasFiniteFPowerSeriesOnBall_uncurry_of_multilinear, ContinuousLinearMap.flipMultilinear_apply_apply, uncurrySum_apply, FormalMultilinearSeries.nnnorm_changeOriginSeries_le_tsum, curryFinFinset_symm_apply_const, curryLeft_norm, ContDiffMapSupportedIn.structureMapLM_eq_of_scalars, restrictScalarsLinear_apply, ContDiffMapSupportedIn.uniformSpace_eq_iInf, ContDiffMapSupportedIn.continuous_iff_comp_withOrder, ContinuousLinearMap.analyticWithinAt_uncurry_of_multilinear, FormalMultilinearSeries.iteratedFDerivSeries_eq_zero, ContDiffMapSupportedIn.structureMapCLM_zero_apply, sum_apply, FormalMultilinearSeries.nnnorm_changeOriginSeriesTerm_apply_le, iteratedFDeriv_tsum, ContinuousLinearMap.cpolyomialOn_uncurry_of_multilinear, OrderedFinpartition.compAlongOrderedFinpartitionβ_apply_apply, prodL_apply, ContinuousLinearMap.coe_flipMultilinearEquiv, PiTensorProduct.liftEquiv_symm_apply, FormalMultilinearSeries.nnnorm_changeOriginSeries_apply_le_tsum, ContDiffMapSupportedIn.structureMapLM_apply_withOrder, PiTensorProduct.liftEquiv_apply, fderivWithin_iteratedFDerivWithin, MultilinearMap.mkContinuousLinear_norm_le, piLinearEquiv_apply, ContinuousLinearMap.uncurryLeft_apply, curryFinFinset_apply_const, compContinuousLinearMapLRight_apply, ContinuousLinearMap.continuousMultilinearMapOption_apply_eq_self, apply_apply, flipLinear_apply_apply, ContinuousLinearMap.cpolynomialAt_uncurry_of_multilinear, ContinuousAlternatingMap.toContinuousMultilinearMapLinear_apply, ContinuousAlternatingMap.toContinuousMultilinearMapCLM_apply, ContinuousLinearMap.continuousWithinAt_uncurry_of_multilinear, PiTensorProduct.dualSeminorms_bounded, curryMidEquiv_apply, ContinuousLinearMap.norm_map_tail_le, PiTensorProduct.injectiveSeminorm_apply, fderivWithin_continuousMultilinearMapCompContinuousLinearMap, MultilinearMap.mkContinuousLinear_norm_le', ContinuousLinearEquiv.continuousMultilinearMapCongrRight_symm, ContinuousAlternatingMap.toContinuousMultilinearMapCLM_comp_fderivCompContinuousLinearMap, ContinuousLinearMap.norm_uncurryMid, ContinuousLinearMap.uncurryLeft_norm, ContinuousLinearMap.continuous_uncurry_of_multilinear, ContDiffMapSupportedIn.isUniformEmbedding_pi_structureMapCLM, MultilinearMap.mkContinuousMultilinear_norm_le', curryFinFinset_symm_apply_piecewise_const, ContinuousAlternatingMap.toContinuousMultilinearMap_curryLeft, ContinuousLinearMap.analyticOnNhd_uncurry_of_multilinear, OrderedFinpartition.compAlongOrderedFinpartitionL_apply, ContinuousLinearMap.uncurryMid_apply, ContDiffMapSupportedIn.structureMapCLM_apply_withOrder, continuousMultilinearCurryLeftEquiv_apply, alternatization_apply_toContinuousMultilinearMap, iteratedFDerivComponent_apply, changeOriginSeries_support, ContDiffMapSupportedIn.seminorm_apply, ContinuousLinearMap.continuousOn_uncurry_of_multilinear, piβα΅’_symm_apply, fderiv_continuousMultilinearMapCompContinuousLinearMap, MultilinearMap.mkContinuousMultilinear_norm_le, hasStrictFDerivAt_compContinuousLinearMap, curryMid_apply, PiTensorProduct.toDualContinuousMultilinearMap_le_projectiveSeminorm, ContinuousLinearMap.hasFDerivAt_uncurry_of_multilinear, HasFDerivAt.linear_multilinear_comp, HasStrictFDerivAt.continuousMultilinearMapCompContinuousLinearMap, ContinuousLinearEquiv.continuousMultilinearMapCongrLeft_apply, compContinuousLinearMapL_apply, prodL_symm_apply, alternatization_apply_toAlternatingMap, ContDiffMapSupportedIn.structureMapLM_zero_injective, curryLeft_apply, ContinuousLinearMap.analyticOn_uncurry_of_multilinear, ContinuousLinearMap.coe_symm_flipMultilinearEquiv, currySum_apply, ContinuousLinearEquiv.continuousMultilinearMapCongrRight_apply, FormalMultilinearSeries.changeOriginSeries_finite_of_finite, ContDiffMapSupportedIn.continuous_iff_comp, continuousMultilinearCurryLeftEquiv_symm_apply, smulRightL_apply, iteratedFDeriv_succ_eq_comp_left, ContDiffMapSupportedIn.structureMapCLM_zero_injective, piβα΅’_apply, ContinuousLinearEquiv.continuousMultilinearMapCongrLeft_symm, FormalMultilinearSeries.norm_changeOriginSeriesTerm, fderivCompContinuousLinearMap_apply, curryFinFinset_symm_apply, FormalMultilinearSeries.nnnorm_changeOriginSeriesTerm, FormalMultilinearSeries.rightInv_coeff, norm_compContinuousLinearMapL_le, FormalMultilinearSeries.changeOriginSeriesTerm_changeOriginIndexEquiv_symm, ContDiffMapSupportedIn.structureMapLM_zero_apply, ContinuousLinearMap.analyticAt_uncurry_of_multilinear, iteratedFDeriv_tsum_apply, toMultilinearMapLinear_apply, HasStrictFDerivAt.continuousMultilinearMap_apply, curryFinFinset_apply, FormalMultilinearSeries.changeOriginSeriesTerm_bound, ContinuousLinearMap.norm_map_removeNth_le, hasStrictFDerivAt_uncurry, compContinuousLinearMapContinuousMultilinear_apply_apply, ContDiffMapSupportedIn.structureMapLM_apply, isBoundedLinearMap_prod_multilinear, norm_curryMid, ContinuousAlternatingMap.toMultilinearAddHom_apply, PiTensorProduct.injectiveSeminorm_def, OrderedFinpartition.norm_compAlongOrderedFinpartitionL_le, ContinuousLinearMap.continuousAt_uncurry_of_multilinear, curryMidEquiv_symm_apply, HasFDerivAt.continuousMultilinearMap_apply
|
applyAddHom π | CompOp | β |
codRestrict π | CompOp | 2 mathmath: codRestrict_apply_coe, codRestrict_toMultilinearMap
|
compContinuousLinearMap π | CompOp | 33 mathmath: analyticAt_uncurry_compContinuousLinearMap, HasFDerivWithinAt.continuousMultilinearMapCompContinuousLinearMap, HasFTaylorSeriesUpToOn.comp_continuousAffineMap, HasFDerivAt.continuousMultilinearMapCompContinuousLinearMap, norm_compContinuous_linearIsometry_le, ContinuousLinearEquiv.iteratedFDerivWithin_comp_right, ContinuousLinearMap.iteratedFDerivWithin_comp_right, DifferentiableAt.continuousMultilinearMapCompContinuousLinearMap, compContinuousLinearMapLRight_apply, Differentiable.continuousMultilinearMapCompContinuousLinearMap, compContinuousLinearMap_apply, fderivWithin_continuousMultilinearMapCompContinuousLinearMap, HasFTaylorSeriesUpToOn.compContinuousLinearMap, DifferentiableOn.continuousMultilinearMapCompContinuousLinearMap, PiTensorProduct.mapLMultilinear_apply_apply, PiTensorProduct.liftIsometry_comp_mapL, fderiv_continuousMultilinearMapCompContinuousLinearMap, hasStrictFDerivAt_compContinuousLinearMap, HasStrictFDerivAt.continuousMultilinearMapCompContinuousLinearMap, ContinuousLinearEquiv.continuousMultilinearMapCongrLeft_apply, compContinuousLinearMapL_apply, cpolynomialOn_uncurry_compContinuousLinearMap, analyticWithinAt_uncurry_compContinuousLinearMap, norm_compContinuous_linearIsometryEquiv, analyticOnNhd_uncurry_compContinuousLinearMap, cpolynomialAt_uncurry_compContinuousLinearMap, ContinuousLinearMap.iteratedFDeriv_comp_right, isBoundedLinearMap_continuousMultilinearMap_comp_linear, analyticOn_uncurry_compContinuousLinearMap, norm_compContinuousLinearMap_le, compContinuousLinearMapContinuousMultilinear_apply_apply, DifferentiableWithinAt.continuousMultilinearMapCompContinuousLinearMap, PiTensorProduct.mapLMultilinear_toFun_apply
|
constOfIsEmpty π | CompOp | 5 mathmath: nnnorm_constOfIsEmpty, constOfIsEmpty_toMultilinearMap, constOfIsEmpty_apply, ContinuousAlternatingMap.constOfIsEmpty_toContinuousMultilinearMap, norm_constOfIsEmpty
|
domDomCongr π | CompOp | 12 mathmath: AnalyticOn.domDomCongr_iteratedFDerivWithin, domDomCongr_toMultilinearMap, isSymmSndFDerivAt_iff_iteratedFDeriv, AnalyticOn.domDomCongr_iteratedFDeriv, ContDiffWithinAt.domDomCongr_iteratedFDerivWithin, domDomCongr_apply, ContDiffAt.domDomCongr_iteratedFDeriv, alternatization_apply_toContinuousMultilinearMap, norm_domDomCongr, domDomCongrEquiv_apply, isSymmSndFDerivWithinAt_iff_iteratedFDerivWithin, domDomCongrEquiv_symm_apply
|
domDomCongrEquiv π | CompOp | 2 mathmath: domDomCongrEquiv_apply, domDomCongrEquiv_symm_apply
|
funLike π | CompOp | 316 mathmath: map_piecewise_smul, FormalMultilinearSeries.comp_rightInv_aux1, HasFDerivWithinAt.continuousMultilinearMap_apply, FormalMultilinearSeries.comp_partialSum, cpolynomialOn, FormalMultilinearSeries.ofScalars_apply_eq', map_smul_univ, NormedSpace.expSeries_summable_of_mem_ball, norm_iteratedFDerivComponent_le, le_mul_prod_of_opNorm_le_of_le, HasFPowerSeriesWithinOnBall.hasSum_sub, analyticAt_uncurry_of_linear, norm_map_snoc_le, Differentiable.continuousMultilinear_apply_const, FormalMultilinearSeries.changeOriginSeriesTerm_apply, alternatization_apply_apply, map_update_sub, FormalMultilinearSeries.congr, coe_coe, iteratedDerivWithin_vcomp_two, mkPiAlgebra_apply, bilinearIteratedFDerivTwo_eq_iteratedFDeriv, MultilinearMap.mkContinuousMultilinear_apply, uniformContinuous_eval_const, HasFPowerSeriesAt.eventually_hasSum, FormalMultilinearSeries.hasSum_of_finite, contDiffAt, HasFDerivWithinAt.linear_multilinear_comp, mkPiRing_apply_one_eq_self, mkPiRing_apply, HasFDerivAt.continuousMultilinear_apply_const, AnalyticOn.iteratedFDerivWithin_comp_perm, FormalMultilinearSeries.ofScalars_apply_eq, HasFPowerSeriesWithinOnBall.isBigO_image_sub_image_sub_deriv_principal, FormalMultilinearSeries.id_apply_one', tensorIteratedFDerivTwo_eq_iteratedFDeriv, HasFPowerSeriesOnBall.hasSum_iteratedFDeriv, curry0_apply, ContinuousLinearMap.cpolynomialOn_uncurry_of_multilinear, HasFDerivAt.multilinear_comp, linearDeriv_apply, NormedSpace.expSeries_apply_eq_div', Real.fourierIntegral_continuousMultilinearMap_apply, Bornology.IsVonNBounded.image_multilinear', iteratedDerivWithin_eq_iteratedFDerivWithin, VectorFourier.fourierPowSMulRight_eq_comp, le_of_opNNNorm_le, ContinuousLinearMap.hasFiniteFPowerSeriesOnBall_uncurry_of_multilinear, ContinuousLinearMap.flipMultilinear_apply_apply, uncurrySum_apply, map_sum, NormedSpace.expSeries_eq_expSeries, NormedSpace.expSeries_summable, FormalMultilinearSeries.comp_coeff_zero, FormalMultilinearSeries.ofScalars_apply_zero, ext_ring_iff, InnerProductSpace.laplacianWithin_eq_iteratedFDerivWithin_complexPlane, TrivSqZeroExt.fst_expSeries, mkPiAlgebraFin_apply, unit_le_opNorm, cauchyPowerSeries_apply, HasFPowerSeriesOnBall.coeff_zero, tensorIteratedFDerivWithinTwo_eq_iteratedFDerivWithin, norm_image_sub_le, NormedSpace.norm_expSeries_summable, MultilinearMap.coe_mkContinuous, map_update_add, curryFinFinset_symm_apply_const, neg_apply, PiTensorProduct.tprodL_toFun, iteratedFDerivWithin_succ_apply_right, le_opNorm, NormedSpace.expSeries_hasSum_exp, FormalMultilinearSeries.hasSum, ContinuousLinearMap.compFormalMultilinearSeries_apply', fderivWithin_continuousMultilinear_apply_const_apply, Quaternion.expSeries_odd_of_imaginary, HasFPowerSeriesWithinAt.coeff_zero, cons_smul, ofSubsingleton_symm_apply_apply, hasFTaylorSeriesUpTo_iteratedFDeriv, map_piecewise_add, ContinuousLinearMap.analyticWithinAt_uncurry_of_multilinear, ordinaryHypergeometricSeries_apply_eq', sum_apply, Bornology.IsVonNBounded.image_multilinear, hasBasis_nhds_zero, compContinuousLinearMap_zero, FormalMultilinearSeries.apply_eq_pow_smul_coeff, fderivWithin_continuousMultilinear_apply_const, continuousMultilinearCurryFin0_symm_apply, FormalMultilinearSeries.compAlongComposition_bound, continuousMultilinearCurryRightEquiv_symm_apply, FormalMultilinearSeries.nnnorm_changeOriginSeriesTerm_apply_le, constOfIsEmpty_apply, ContinuousLinearMap.cpolyomialOn_uncurry_of_multilinear, hasFiniteFPowerSeriesOnBall, analyticAt, norm_map_init_le, ordinaryHypergeometricSeries_apply_zero, NormedSpace.norm_expSeries_summable_of_mem_ball, binomialSeries_apply, cons_add, map_add_univ, FormalMultilinearSeries.nnnorm_changeOriginSeries_apply_le_tsum, iteratedFDerivWithin_one_apply, cpolyomialOn_uncurry_of_linear, hasSum_cauchyPowerSeries_integral, HasFPowerSeriesWithinOnBall.hasSum_derivSeries_of_hasFDerivWithinAt, HasFPowerSeriesAt.isBigO_image_sub_norm_mul_norm_sub, coe_continuous, HasFPowerSeriesOnBall.hasSum, NormedSpace.expSeries_apply_eq, instContinuousEvalConstForall, contDiff, ContinuousLinearMap.uncurryLeft_apply, HasFPowerSeriesWithinOnBall.image_sub_sub_deriv_le, curryFinFinset_apply_const, compContinuousLinearMapLRight_apply, HasFPowerSeriesAt.hasStrictDerivAt, ContinuousLinearMap.continuousMultilinearMapOption_apply_eq_self, apply_apply, flipLinear_apply_apply, hasStrictFDerivAt, pi_apply, toContinuousLinearMap_apply, ContinuousLinearMap.uncurryBilinear_apply, ContinuousLinearMap.cpolynomialAt_uncurry_of_multilinear, Quaternion.expSeries_even_of_imaginary, NormedSpace.expSeries_apply_eq_div, tsum_eval, HasFPowerSeriesAt.apply_eq_zero, FormalMultilinearSeries.comp_coeff_one, iteratedDeriv_vcomp_three, iteratedFDerivWithin_two_apply', ContinuousLinearMap.continuousWithinAt_uncurry_of_multilinear, FormalMultilinearSeries.applyComposition_single, continuousMultilinearCurryFin0_apply, iteratedFDeriv_eq, HasFPowerSeriesOnBall.isBigO_image_sub_image_sub_deriv_principal, HasStrictFDerivAt.continuousMultilinear_apply_const, NormedSpace.expSeries_apply_zero, iteratedFDerivWithin_succ_apply_left, DifferentiableOn.continuousMultilinear_apply_const, cpolynomialAt_uncurry_of_linear, instContinuousEval, compContinuousLinearMap_apply, FormalMultilinearSeries.id_comp, ContinuousLinearMap.norm_map_tail_le, map_coord_zero, ContinuousLinearMap.compContinuousMultilinearMap_coe, iteratedFDeriv_comp_diagonal, InnerProductSpace.laplacianWithin_eq_iteratedFDerivWithin_orthonormalBasis, iteratedDeriv_vcomp_eq_sum_orderedFinpartition, ordinaryHypergeometricSeries_apply_eq, hasSum_eval, HasFPowerSeriesAt.tendsto_partialSum_prod_of_comp, uncurryRight_apply, cpolynomialAt, ratio_le_opNorm, integral_apply, iteratedFDeriv_zero_apply, HasFDerivWithinAt.multilinear_comp, fderiv_continuousMultilinear_apply_const_apply, add_apply, ContinuousLinearMap.continuous_uncurry_of_multilinear, curryRight_apply, NormedSpace.expSeries_apply_eq', curryFinFinset_symm_apply_piecewise_const, InnerProductSpace.laplacianWithin_eq_iteratedFDerivWithin_stdOrthonormalBasis, AnalyticOn.iteratedFDeriv_comp_perm, domDomCongr_apply, analyticOn_uncurry_of_linear, iteratedFDeriv_one_apply, HasFPowerSeriesOnBall.factorial_smul, iteratedFDeriv_succ_apply_right, ContinuousLinearMap.analyticOnNhd_uncurry_of_multilinear, OrderedFinpartition.compAlongOrderedFinpartitionL_apply, FormalMultilinearSeries.comp_coeff_zero', smul_apply, HasFPowerSeriesOnBall.eventually_hasSum, IsSymmSndFDerivAt.iteratedFDeriv_cons, FormalMultilinearSeries.id_apply_zero, PiTensorProduct.mapLMultilinear_apply_apply, ContinuousLinearMap.uncurryMid_apply, HasFPowerSeriesWithinOnBall.coeff_zero, norm_iteratedFDeriv_le, DifferentiableAt.continuousMultilinear_apply_const, InnerProductSpace.laplacian_eq_iteratedFDeriv_stdOrthonormalBasis, ContinuousAlternatingMap.coe_mk, FormalMultilinearSeries.apply_eq_prod_smul_coeff, HasFDerivWithinAt.continuousMultilinear_apply_const, le_opNorm_mul_pow_card_of_le, continuousMultilinearCurryLeftEquiv_apply, HasFPowerSeriesAt.deriv, iteratedFDerivComponent_apply, SchwartzMap.iteratedPDeriv_eq_iteratedFDeriv, hasFDerivAt, ContinuousLinearMap.continuousOn_uncurry_of_multilinear, HasFPowerSeriesWithinAt.isBigO_image_sub_norm_mul_norm_sub, InnerProductSpace.laplacian_eq_iteratedFDeriv_complexPlane, bilinearIteratedFDerivWithinTwo_eq_iteratedFDeriv, hasBasis_nhds_zero_of_basis, uniformContinuous_coe_fun, SchwartzMap.iteratedLineDerivOp_eq_iteratedFDeriv, OrderedFinpartition.compAlongOrderFinpartition_apply, ContDiffAt.iteratedFDeriv_comp_perm, HasFPowerSeriesAt.eventually_hasSum_of_comp, sub_apply, coe_pi, fderiv_continuousMultilinear_apply_const, OrderedFinpartition.applyOrderedFinpartition_apply, analyticOn, curryMid_apply, iteratedDeriv_eq_iteratedFDeriv, HasFPowerSeriesWithinOnBall.iteratedFDerivWithin_eq_sum_of_completeSpace, ContinuousLinearMap.hasFDerivAt_uncurry_of_multilinear, map_update_smul, PiTensorProduct.tprodL_apply, HasFPowerSeriesAt.hasDerivAt, HasFPowerSeriesAt.eventually_hasSum_sub, HasFDerivAt.linear_multilinear_comp, FormalMultilinearSeries.compAlongComposition_apply, le_opNorm_mul_prod_of_le, analyticOnNhd, analyticWithinAt_uncurry_of_linear, HasFPowerSeriesOnBall.eventually_hasSum_sub, opNNNorm_le_iff, ofSubsingleton_apply_apply, continuousMultilinearCurryRightEquiv_symm_apply', iteratedFDerivWithin_two_apply, bound, VectorFourier.fourierPowSMulRight_apply, NormedSpace.expSeries_eq_expSeries_rat, ContinuousAlternatingMap.coe_toContinuousMultilinearMap, map_sum_finset, uncurry0_apply, le_of_opNorm_le, FormalMultilinearSeries.comp_rightInv, curryLeft_apply, OrderedFinpartition.applyOrderedFinpartition_update_left, DifferentiableWithinAt.continuousMultilinear_apply_const, analyticWithinAt, InnerProductSpace.laplacian_eq_iteratedFDeriv_orthonormalBasis, toUniformOnFun_toFun, coe_restrictScalars, HasFPowerSeriesOnBall.iteratedFDeriv_eq_sum_of_completeSpace, ContinuousLinearMap.analyticOn_uncurry_of_multilinear, VectorFourier.fourierIntegral_continuousMultilinearMap_apply, HasFPowerSeriesOnBall.image_sub_sub_deriv_le, smulRight_apply, iteratedFDerivWithin_clm_apply_const_apply, currySum_apply, continuousMultilinearCurryRightEquiv_apply', compAlongComposition_apply, ContDiffWithinAt.iteratedFDerivWithin_comp_perm, Real.fourier_continuousMultilinearMap_apply, norm_map_insertNth_le, HasFPowerSeriesAt.coeff_zero, HasFPowerSeriesOnBall.hasSum_sub, iteratedFDeriv_two_apply, iteratedDerivWithin_vcomp_eq_sum_orderedFinpartition, continuousMultilinearCurryLeftEquiv_symm_apply, zero_apply, FormalMultilinearSeries.applyComposition_update, ext_iff, iteratedFDeriv_apply_eq_iteratedDeriv_mul_prod, continuousMultilinearCurryFin1_symm_apply, Quaternion.hasSum_expSeries_of_imaginary, opNorm_le_iff, iteratedDeriv_vcomp_two, map_zero, norm_map_cons_le, continuousMapClass, FormalMultilinearSeries.derivSeries_apply_diag, iteratedFDeriv_clm_apply_const_apply, HasFPowerSeriesWithinOnBall.hasSum, fderivCompContinuousLinearMap_apply, curryFinFinset_symm_apply, FormalMultilinearSeries.id_apply_one, apply_zero_uncurry0, iteratedFDerivWithin_apply_eq_iteratedDerivWithin_mul_prod, FormalMultilinearSeries.summable, FormalMultilinearSeries.compContinuousLinearMap_apply, FormalMultilinearSeries.summable_norm_apply, FormalMultilinearSeries.compAlongOrderedFinpartition_apply, le_opNorm_mul_pow_of_le, le_opNNNorm, FormalMultilinearSeries.comp_rightInv_aux2, FormalMultilinearSeries.changeOriginSeriesTerm_changeOriginIndexEquiv_symm, continuousMultilinearCurryRightEquiv_apply, analyticOnNhd_uncurry_of_linear, HasFPowerSeriesWithinOnBall.iteratedFDerivWithin_eq_sum, ContinuousLinearMap.analyticAt_uncurry_of_multilinear, HasStrictFDerivAt.continuousMultilinearMap_apply, curryFinFinset_apply, OrderedFinpartition.applyOrderedFinpartition_update_right, ContinuousLinearMap.norm_map_removeNth_le, hasStrictFDerivAt_uncurry, Real.fourierIntegral_continuousMultilinearMap_apply', compContinuousLinearMapContinuousMultilinear_apply_apply, norm_image_sub_le', iteratedFDerivWithin_zero_apply, NormedSpace.expSeries_hasSum_exp_of_mem_ball, prod_apply, FormalMultilinearSeries.applyComposition_ones, fin0_apply_norm, HasFPowerSeriesOnBall.iteratedFDeriv_eq_sum, TrivSqZeroExt.snd_expSeries_of_smul_comm, IsSymmSndFDerivWithinAt.iteratedFDerivWithin_cons, ContinuousLinearMap.continuousAt_uncurry_of_multilinear, PiTensorProduct.mapLMultilinear_toFun_apply, iteratedDerivWithin_vcomp_three, iteratedFDeriv_succ_apply_left, HasFDerivAt.continuousMultilinearMap_apply, continuousMultilinearCurryFin1_apply
|
instAdd π | CompOp | 11 mathmath: toMultilinearMap_add, iteratedFDeriv_add_apply, iteratedFDeriv_add, iteratedFDerivWithin_add_apply, opNorm_add_le, add_apply, FormalMultilinearSeries.add_apply, ContinuousAlternatingMap.toContinuousMultilinearMap_add, add_prod_add, iteratedFDerivWithin_add_apply', iteratedFDeriv_add_apply'
|
instAddCommGroup π | CompOp | 42 mathmath: fderiv_iteratedFDeriv, ContinuousAlternatingMap.hasStrictFDerivAt_toContinuousMultilinearMap_comp_iff, hasFTaylorSeriesUpToOn_top_iff_right, iteratedFDerivWithin_succ_eq_comp_left, contDiffOn_iff_continuousOn_differentiableOn, OrderedFinpartition.norm_compAlongOrderedFinpartitionL_apply_le, norm_smulRightL_le, VectorFourier.fourierPowSMulRight_eq_comp, contDiffOn_nat_iff_continuousOn_differentiableOn, ContDiff.differentiable_iteratedFDeriv, instIsUniformAddGroup, hasFTaylorSeriesUpToOn_top_iff', contDiff_iff_continuous_differentiable, hasFTaylorSeriesUpToOn_succ_iff_right, ContinuousLinearMap.coe_flipMultilinearEquiv, hasFTaylorSeriesUpTo_top_iff', fderivWithin_iteratedFDerivWithin, hasFTaylorSeriesUpTo_succ_nat_iff_right, hasFTaylorSeriesUpToOn_succ_nat_iff_right, PiTensorProduct.dualSeminorms_bounded, iteratedFDerivWithin_succ_apply_left, HasFTaylorSeriesUpToOn.fderivWithin, PiTensorProduct.injectiveSeminorm_apply, norm_fderiv_iteratedFDeriv, norm_fderivWithin_iteratedFDerivWithin, OrderedFinpartition.compAlongOrderedFinpartitionL_apply, ContDiffWithinAt.differentiableWithinAt_iteratedFDerivWithin, contDiff_nat_iff_continuous_differentiable, hasStrictFDerivAt_compContinuousLinearMap, hasFTaylorSeriesUpToOn_succ_iff_left, ContinuousLinearMap.coe_symm_flipMultilinearEquiv, smulRightL_apply, iteratedFDeriv_succ_eq_comp_left, ContDiffAt.differentiableAt_iteratedFDeriv, HasFTaylorSeriesUpTo.fderiv, ContDiffOn.differentiableOn_iteratedFDerivWithin, instIsTopologicalAddGroup, hasStrictFDerivAt_uncurry, compContinuousLinearMapContinuousMultilinear_apply_apply, PiTensorProduct.injectiveSeminorm_def, OrderedFinpartition.norm_compAlongOrderedFinpartitionL_le, iteratedFDeriv_succ_apply_left
|
instDistribMulAction π | CompOp | β |
instInhabited π | CompOp | β |
instModule π | CompOp | 199 mathmath: fderiv_iteratedFDeriv, FormalMultilinearSeries.changeOriginSeries_sum_eq_partialSum_of_finite, norm_iteratedFDerivComponent_le, ContinuousAlternatingMap.hasStrictFDerivAt_toContinuousMultilinearMap_comp_iff, hasFTaylorSeriesUpToOn_top_iff_right, ContDiffMapSupportedIn.iteratedFDerivLM_apply, ContDiffMapSupportedIn.structureMapCLM_eq_of_scalars, FormalMultilinearSeries.changeOriginSeriesTerm_apply, changeOrigin_toFormalMultilinearSeries, ContDiffMapSupportedIn.structureMapCLM_apply, iteratedFDerivWithin_succ_eq_comp_right, HasFTaylorSeriesUpTo.hasFDerivAt, MultilinearMap.mkContinuousMultilinear_apply, norm_compContinuousLinearMapLRight_le, FormalMultilinearSeries.changeOriginSeries_summable_auxβ, piLinearEquiv_symm_apply, HasFPowerSeriesWithinAt.hasStrictFDerivWithinAt, HasFDerivWithinAt.linear_multilinear_comp, iteratedFDerivWithin_succ_eq_comp_left, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_apply_of_gt, contDiffOn_iff_continuousOn_differentiableOn, PiTensorProduct.toDualContinuousMultilinearMap_apply_apply, OrderedFinpartition.norm_compAlongOrderedFinpartitionL_apply_le, HasFTaylorSeriesUpToOn.zero_eq', norm_smulRightL_le, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_eq_of_scalars, ContinuousLinearMap.cpolynomialOn_uncurry_of_multilinear, VectorFourier.fourierPowSMulRight_eq_comp, ContinuousLinearMap.hasFiniteFPowerSeriesOnBall_uncurry_of_multilinear, ContinuousLinearMap.flipMultilinear_apply_apply, uncurrySum_apply, FormalMultilinearSeries.nnnorm_changeOriginSeries_le_tsum, HasFTaylorSeriesUpToOn.eventually_hasFDerivAt, curryFinFinset_symm_apply_const, HasFPowerSeriesOnBall.fderiv_eq, HasFTaylorSeriesUpToOn.hasFDerivWithinAt, curryLeft_norm, isBoundedBilinearMap_compMultilinear, ContDiffMapSupportedIn.structureMapLM_eq_of_scalars, HasFPowerSeriesWithinAt.fderivWithin_eq, restrictScalarsLinear_apply, contDiffOn_nat_iff_continuousOn_differentiableOn, ContDiff.differentiable_iteratedFDeriv, ContDiffMapSupportedIn.uniformSpace_eq_iInf, PiTensorProduct.liftIsometry_tprodL, ContDiffMapSupportedIn.continuous_iff_comp_withOrder, ContinuousLinearMap.analyticWithinAt_uncurry_of_multilinear, FormalMultilinearSeries.iteratedFDerivSeries_eq_zero, iteratedFDerivWithin_eq_equiv_comp, ContDiffMapSupportedIn.structureMapCLM_zero_apply, ofSubsingletonβα΅’_symm_apply, continuousMultilinearCurryFin0_symm_apply, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_apply, continuousMultilinearCurryRightEquiv_symm_apply, FormalMultilinearSeries.nnnorm_changeOriginSeriesTerm_apply_le, hasFTaylorSeriesUpToOn_top_iff', ContinuousAlternatingMap.toContinuousMultilinearMapLI_apply, ContinuousLinearMap.cpolyomialOn_uncurry_of_multilinear, OrderedFinpartition.compAlongOrderedFinpartitionβ_apply_apply, contDiff_iff_continuous_differentiable, prodL_apply, hasFTaylorSeriesUpToOn_succ_iff_right, ContinuousLinearMap.coe_flipMultilinearEquiv, PiTensorProduct.liftEquiv_symm_apply, FormalMultilinearSeries.nnnorm_changeOriginSeries_apply_le_tsum, ContDiffMapSupportedIn.structureMapLM_apply_withOrder, PiTensorProduct.liftEquiv_apply, hasFTaylorSeriesUpTo_top_iff', fderivWithin_iteratedFDerivWithin, MultilinearMap.mkContinuousLinear_norm_le, piLinearEquiv_apply, ContinuousLinearMap.uncurryLeft_apply, curryFinFinset_apply_const, compContinuousLinearMapLRight_apply, ContinuousLinearMap.continuousMultilinearMapOption_apply_eq_self, apply_apply, flipLinear_apply_apply, hasFTaylorSeriesUpTo_succ_nat_iff_right, ContinuousLinearMap.cpolynomialAt_uncurry_of_multilinear, iteratedFDeriv_eq_equiv_comp, hasFTaylorSeriesUpToOn_succ_nat_iff_right, ContinuousAlternatingMap.toContinuousMultilinearMapLinear_apply, ContinuousAlternatingMap.toContinuousMultilinearMapCLM_apply, ContinuousLinearMap.continuousWithinAt_uncurry_of_multilinear, HasFPowerSeriesAt.fderiv_eq, continuousMultilinearCurryFin0_apply, PiTensorProduct.dualSeminorms_bounded, curryMidEquiv_apply, iteratedFDerivWithin_succ_apply_left, HasFTaylorSeriesUpToOn.fderivWithin, ContinuousLinearMap.norm_map_tail_le, PiTensorProduct.injectiveSeminorm_apply, norm_fderiv_iteratedFDeriv, HasFTaylorSeriesUpToOn.hasFDerivAt, iteratedDeriv_eq_equiv_comp, MultilinearMap.mkContinuousLinear_norm_le', norm_fderivWithin_iteratedFDerivWithin, HasFTaylorSeriesUpToOn.shift_of_succ, ContinuousLinearEquiv.continuousMultilinearMapCongrRight_symm, ContinuousAlternatingMap.toContinuousMultilinearMapCLM_comp_fderivCompContinuousLinearMap, ContinuousLinearMap.norm_uncurryMid, ContinuousLinearMap.uncurryLeft_norm, ContinuousLinearMap.continuous_uncurry_of_multilinear, ContDiffMapSupportedIn.isUniformEmbedding_pi_structureMapCLM, MultilinearMap.mkContinuousMultilinear_norm_le', curryFinFinset_symm_apply_piecewise_const, ContinuousAlternatingMap.toContinuousMultilinearMap_curryLeft, FormalMultilinearSeries.leftInv_coeff_one, ContinuousLinearMap.analyticOnNhd_uncurry_of_multilinear, OrderedFinpartition.compAlongOrderedFinpartitionL_apply, HasFPowerSeriesAt.hasFDerivAt, ContinuousLinearMap.uncurryMid_apply, ContDiffMapSupportedIn.structureMapCLM_apply_withOrder, PiTensorProduct.liftIsometry_comp_mapL, continuousMultilinearCurryLeftEquiv_apply, PiTensorProduct.liftIsometry_symm_apply, iteratedFDerivComponent_apply, ContDiffWithinAt.differentiableWithinAt_iteratedFDerivWithin, iteratedFDeriv_succ_eq_comp_right, changeOriginSeries_support, ContDiffMapSupportedIn.seminorm_apply, ContinuousLinearMap.continuousOn_uncurry_of_multilinear, HasFPowerSeriesWithinOnBall.fderivWithin_eq, piβα΅’_symm_apply, HasFTaylorSeriesUpToOn.hasStrictFDerivAt, contDiff_nat_iff_continuous_differentiable, MultilinearMap.mkContinuousMultilinear_norm_le, hasStrictFDerivAt_compContinuousLinearMap, HasFPowerSeriesOnBall.hasFDerivAt, curryMid_apply, PiTensorProduct.toDualContinuousMultilinearMap_le_projectiveSeminorm, ContinuousLinearMap.hasFDerivAt_uncurry_of_multilinear, HasFDerivAt.linear_multilinear_comp, ContinuousLinearEquiv.continuousMultilinearMapCongrLeft_apply, compContinuousLinearMapL_apply, PiTensorProduct.liftIsometry_apply_apply, prodL_symm_apply, iteratedFDeriv_zero_eq_comp, hasFTaylorSeriesUpToOn_succ_iff_left, continuousMultilinearCurryRightEquiv_symm_apply', ContDiffMapSupportedIn.structureMapLM_zero_injective, iteratedDerivWithin_eq_equiv_comp, curryLeft_apply, iteratedFDerivWithin_zero_eq_comp, ContinuousLinearMap.analyticOn_uncurry_of_multilinear, HasFiniteFPowerSeriesOnBall.hasStrictFDerivAt, ContinuousLinearMap.coe_symm_flipMultilinearEquiv, currySum_apply, continuousMultilinearCurryRightEquiv_apply', HasFiniteFPowerSeriesOnBall.hasFDerivAt, ContinuousLinearEquiv.continuousMultilinearMapCongrRight_apply, FormalMultilinearSeries.changeOriginSeries_finite_of_finite, ContDiffMapSupportedIn.continuous_iff_comp, continuousMultilinearCurryLeftEquiv_symm_apply, smulRightL_apply, iteratedFDeriv_succ_eq_comp_left, ContDiffMapSupportedIn.structureMapCLM_zero_injective, piβα΅’_apply, ofSubsingletonβα΅’_apply, continuousMultilinearCurryFin1_symm_apply, ContDiffAt.differentiableAt_iteratedFDeriv, ContinuousLinearEquiv.continuousMultilinearMapCongrLeft_symm, FormalMultilinearSeries.norm_changeOriginSeriesTerm, fderivCompContinuousLinearMap_apply, HasFTaylorSeriesUpTo.zero_eq', curryFinFinset_symm_apply, HasFTaylorSeriesUpTo.fderiv, HasFiniteFPowerSeriesOnBall.fderiv_eq, HasFPowerSeriesAt.hasStrictFDerivAt, isBoundedLinearMap_continuousMultilinearMap_comp_linear, FormalMultilinearSeries.nnnorm_changeOriginSeriesTerm, ContDiffMapSupportedIn.iteratedFDerivLM_eq_of_scalars, ContDiffOn.differentiableOn_iteratedFDerivWithin, norm_compContinuousLinearMapL_le, FormalMultilinearSeries.changeOriginSeriesTerm_changeOriginIndexEquiv_symm, continuousMultilinearCurryRightEquiv_apply, ContDiffMapSupportedIn.structureMapLM_zero_apply, HasFPowerSeriesWithinAt.hasFDerivWithinAt, FormalMultilinearSeries.rightInv_coeff_one, ContinuousLinearMap.analyticAt_uncurry_of_multilinear, ContinuousLinearMap.fpowerSeries_apply_one, toMultilinearMapLinear_apply, curryFinFinset_apply, FormalMultilinearSeries.changeOriginSeriesTerm_bound, ContinuousLinearMap.norm_map_removeNth_le, hasStrictFDerivAt_uncurry, compContinuousLinearMapContinuousMultilinear_apply_apply, HasFPowerSeriesWithinOnBall.hasFDerivWithinAt, ContDiffMapSupportedIn.structureMapLM_apply, isBoundedLinearMap_prod_multilinear, ContinuousLinearMap.fpowerSeriesBilinear_apply_one, norm_curryMid, PiTensorProduct.injectiveSeminorm_def, OrderedFinpartition.norm_compAlongOrderedFinpartitionL_le, ContinuousLinearMap.continuousAt_uncurry_of_multilinear, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_apply_of_le, curryMidEquiv_symm_apply, iteratedFDeriv_succ_apply_left, continuousMultilinearCurryFin1_apply
|
instMulAction π | CompOp | β |
instNeg π | CompOp | 7 mathmath: iteratedFDerivWithin_neg_apply, neg_apply, iteratedFDeriv_neg_apply, FormalMultilinearSeries.neg_apply, neg_prod_neg, FormalMultilinearSeries.rightInv_coeff, iteratedFDeriv_neg
|
instSMul π | CompOp | 18 mathmath: FormalMultilinearSeries.smul_apply, VectorFourier.fourierPowSMulRight_eq_comp, opNorm_smul_le, iteratedFDerivWithin_const_smul_apply, iteratedFDeriv_const_smul_apply, iteratedFDeriv_const_smul_apply', smul_prod_smul, instContinuousConstSMul, instIsBoundedSMul, instIsScalarTower, smul_apply, alternatization_apply_toContinuousMultilinearMap, instUniformContinuousConstSMul, instContinuousSMul, instSMulCommClass, instIsCentralScalar, ContinuousAlternatingMap.toContinuousMultilinearMap_smul, toMultilinearMap_smul
|
instSub π | CompOp | 6 mathmath: ContDiffPointwiseHolderAt.isBigO, contDiffPointwiseHolderAt_iff, sub_apply, FormalMultilinearSeries.sub_apply, OrderedFinpartition.norm_compAlongOrderedFinpartition_sub_compAlongOrderedFinpartition_le, sub_prod_sub
|
instZero π | CompOp | 42 mathmath: FormalMultilinearSeries.removeZero_coeff_zero, FormalMultilinearSeries.ofScalars_eq_zero_of_scalar_zero, opNorm_zero_iff, HasFiniteFPowerSeriesAt.finite, iteratedFDerivWithin_succ_const, FormalMultilinearSeries.ofScalars_eq_zero, iteratedFDeriv_succ_const, FormalMultilinearSeries.coeff_eq_zero, hasBasis_nhds_zero, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_apply, ContinuousLinearMap.fpowerSeriesBilinear_apply_add_three, ContinuousAlternatingMap.toContinuousMultilinearMap_zero, ContinuousLinearMap.fpowerSeries_apply_add_two, opNorm_zero, ContDiffMapSupportedIn.structureMapLM_apply_withOrder, instIsBoundedSMul, constFormalMultilinearSeries_apply_of_nonzero, toMultilinearMap_zero, ContDiffMapSupportedIn.iteratedFDeriv_zero_on_compl, mkPiRing_zero, support_iteratedFDeriv_subset, ContDiffMapSupportedIn.structureMapCLM_apply_withOrder, HasCompactSupport.iteratedFDeriv, changeOriginSeries_support, tsupport_iteratedFDeriv_subset, FormalMultilinearSeries.apply_eq_zero_of_lt_order, hasBasis_nhds_zero_of_basis, iteratedFDeriv_zero_fun, ordinaryHypergeometricSeries_eq_zero_iff, HasFiniteFPowerSeriesOnBall.finite, FormalMultilinearSeries.id_apply_of_one_lt, FormalMultilinearSeries.order_eq_find, iteratedFDerivWithin_const_of_ne, iteratedFDerivWithin_zero_fun, zero_apply, mkPiRing_eq_zero_iff, ordinaryHypergeometricSeries_eq_zero_of_neg_nat, FormalMultilinearSeries.zero_apply, zero_prod_zero, FormalMultilinearSeries.comp_rightInv_aux2, constFormalMultilinearSeries_apply_succ, iteratedFDeriv_const_of_ne
|
linearDeriv π | CompOp | 8 mathmath: changeOrigin_toFormalMultilinearSeries, linearDeriv_apply, ContinuousAlternatingMap.hasStrictFDerivAt, hasStrictFDerivAt, hasFDerivAt, ContinuousAlternatingMap.hasFDerivWithinAt, ContinuousAlternatingMap.hasFDerivAt, hasStrictFDerivAt_uncurry
|
mkPiAlgebra π | CompOp | 6 mathmath: mkPiAlgebra_apply, norm_mkPiAlgebra_le, VectorFourier.fourierPowSMulRight_eq_comp, mkPiAlgebra_eq_mkPiAlgebraFin, norm_mkPiAlgebra, norm_mkPiAlgebra_of_empty
|
mkPiAlgebraFin π | CompOp | 8 mathmath: mkPiAlgebraFin_apply, norm_mkPiAlgebraFin_zero, norm_mkPiAlgebraFin_le_of_pos, mkPiAlgebra_eq_mkPiAlgebraFin, norm_mkPiAlgebraFin_le, norm_mkPiAlgebraFin_succ_le, FormalMultilinearSeries.ofScalars_norm_eq_mul, norm_mkPiAlgebraFin
|
mkPiRing π | CompOp | 8 mathmath: norm_mkPiRing, mkPiRing_apply_one_eq_self, mkPiRing_apply, spectrum.hasFPowerSeriesOnBall_inverse_one_sub_smul, FormalMultilinearSeries.mkPiRing_coeff_eq, mkPiRing_zero, mkPiRing_eq_iff, mkPiRing_eq_zero_iff
|
ofSubsingleton π | CompOp | 12 mathmath: ContinuousAlternatingMap.ofSubsingleton_apply_toContinuousMultilinearMap, ofSubsingleton_symm_apply_apply, ofSubsingletonβα΅’_symm_apply, norm_ofSubsingleton_id_le, nnnorm_ofSubsingleton, ofSubsingleton_apply_toMultilinearMap, ofSubsingleton_apply_apply, nnnorm_ofSubsingleton_id_le, nnnorm_ofSubsingleton_id, norm_ofSubsingleton, ofSubsingletonβα΅’_apply, norm_ofSubsingleton_id
|
pi π | CompOp | 8 mathmath: piLinearEquiv_apply, pi_apply, opNorm_pi, piEquiv_apply, opNNNorm_pi, coe_pi, piβα΅’_apply, hasFTaylorSeriesUpToOn_pi
|
piEquiv π | CompOp | 2 mathmath: piEquiv_apply, piEquiv_symm_apply
|
piLinearEquiv π | CompOp | 2 mathmath: piLinearEquiv_symm_apply, piLinearEquiv_apply
|
prod π | CompOp | 14 mathmath: eq_prod_iff, smul_prod_smul, iteratedFDerivWithin_prodMk, prodEquiv_apply, opNNNorm_prod, HasFTaylorSeriesUpToOn.prodMk, iteratedFDeriv_prodMk, neg_prod_neg, sub_prod_sub, zero_prod_zero, opNorm_prod, isBoundedLinearMap_prod_multilinear, prod_apply, add_prod_add
|
prodEquiv π | CompOp | 6 mathmath: prodEquiv_symm_apply_fst, prodL_apply, prodEquiv_symm_apply, prodEquiv_apply, prodEquiv_symm_apply_snd, prodL_symm_apply
|
restrictScalars π | CompOp | 11 mathmath: isEmbedding_restrictScalars, restrictScalarsLinear_apply, ContDiffWithinAt.restrictScalars_iteratedFDerivWithin_eventuallyEq, uniformContinuous_restrictScalars, norm_restrictScalars, ContDiffAt.restrictScalars_iteratedFDeriv_eventuallyEq, ContDiffAt.restrictScalars_iteratedFDeriv, coe_restrictScalars, fderivWithin_restrictScalars_comp, isUniformEmbedding_restrictScalars, continuous_restrictScalars
|
smulRight π | CompOp | 6 mathmath: ContinuousAlternatingMap.smulRight_toContinuousMultilinearMap, smulRight_toMultilinearMap, smulRight_apply, smulRightL_apply, nnnorm_smulRight, norm_smulRight
|
toContinuousLinearMap π | CompOp | 9 mathmath: HasFDerivWithinAt.continuousMultilinearMap_apply, HasFDerivWithinAt.linear_multilinear_comp, HasFDerivAt.multilinear_comp, toContinuousLinearMap_apply, HasFDerivWithinAt.multilinear_comp, ContinuousLinearMap.hasFDerivAt_uncurry_of_multilinear, HasFDerivAt.linear_multilinear_comp, HasStrictFDerivAt.continuousMultilinearMap_apply, HasFDerivAt.continuousMultilinearMap_apply
|
toMultilinearMap π | CompOp | 22 mathmath: coe_coe, toMultilinearMap_add, domDomCongr_toMultilinearMap, PiTensorProduct.toDualContinuousMultilinearMap_apply_apply, constOfIsEmpty_toMultilinearMap, PiTensorProduct.norm_eval_le_injectiveSeminorm, PiTensorProduct.liftEquiv_apply, ContinuousAlternatingMap.map_eq_zero_of_eq', toMultilinearMap_zero, cont, PiTensorProduct.mapLMultilinear_apply_apply, toMultilinearMap_injective, codRestrict_toMultilinearMap, ofSubsingleton_apply_toMultilinearMap, PiTensorProduct.liftIsometry_apply_apply, alternatization_apply_toAlternatingMap, PiTensorProduct.norm_eval_le_projectiveSeminorm, smulRight_toMultilinearMap, toMultilinearMap_smul, toMultilinearMapLinear_apply, PiTensorProduct.mapLMultilinear_toFun_apply, PiTensorProduct.tprodL_coe
|
toMultilinearMapLinear π | CompOp | 1 mathmath: toMultilinearMapLinear_apply
|