Documentation Verification Report

PerfectSpace

📁 Source: Mathlib/Topology/Algebra/Module/PerfectSpace.lean

Statistics

MetricCount
DefinitionsPerfectSpace
1
TheoremsinstPerfectSpace, perfectSpace_of_module
2
Total3

(root)

Definitions

NameCategoryTheorems
PerfectSpace 📖CompData
5 mathmath: perfectSpace_of_module, perfectSpace_def, instPerfectSpaceOfT1SpaceOfConnectedSpaceOfNontrivial, perfectSpace_iff_forall_not_isolated, instPerfectSpace

Theorems

NameKindAssumesProvesValidatesDepends On
instPerfectSpace 📖mathematicalPerfectSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
perfectSpace_of_module
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
perfectSpace_of_module 📖mathematicalPerfectSpaceNormedField.exists_norm_lt_one
exists_ne
Filter.Tendsto.add
tendsto_const_nhds
Filter.Tendsto.smul
tendsto_pow_atTop_nhds_zero_of_norm_lt_one
zero_smul
add_zero
AddLeftCancelSemigroup.toIsLeftCancelAdd
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
Field.isDomain
GroupWithZero.toNoZeroSMulDivisors
IsDomain.toIsCancelMulZero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
norm_pos_iff
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
accPt_principal_iff_nhdsWithin
Filter.NeBot.mono
Filter.NeBot.map
Filter.atTop_neBot

---

← Back to Index